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Abstract

The presence of non-local correlation in quantum mechanics gives greater advan-

tages in the information processing tasks over classical theory. This thesis is

devoted to study the non-local feature of quantum mechanics and its application

in different information processing tasks. In the second chapter, we propose an

experimental scheme to show the presence of non-locality at the single particle

level. Next, we use the correlation between different degrees of freedom of a sin-

gle particle to send an unknown quantum state at a distance location, securely.

We then study the winning probability of two different quantum games over all

possible classical and quantum strategies. In the chapter-4, we show that the win-

ning probability of special kind of non-local retrieval games are different when the

players use classical correlation, quantum correlation and super quantum correla-

tion. In the following chapter, we define a new quantum game that captures the

reduction of uncertainty for the measurement of two non-commuting observables,

optimally, with the help of non-local correlation, i.e., entanglement between the

observed system and quantum memory. Next, we study the protection of informa-

tion when the information transfers through a noisy amplitude damping channel.

Finally, in the concluding chapter, we summarize the interesting key results of our

work.
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Chapter 1

General Introduction

1.1 Characterization of entanglement

1.1.1 Entanglement and separability

In 1935, Einstein, Podolsky, and Rosen [Einstein, Podolsky, and Rosen, 1935]; and

Schrödinger [Schrödinger, 1935] used entanglement to bring out ill-understood fea-

tures of quantum mechanics. In the EPR paper [Einstein, Podolsky, and Rosen,

1935], Einstein and co-authors argued that the presence of entanglement makes

quantum physics incomplete. Entanglement is a signature of the super-position

principle and the quantum non-factorizability. Entanglement represents a corre-

lation among two or more quantum systems (or quantum particles). Due to the

presence of the above non-classical correlation, quantum physics performs more

efficiently in different information processing tasks over classical physics. In this

thesis, we restrict our investigation of the application of entanglement to bipartite

and the tripartite systems.

A quantum system labeled by A, in general, is considered as an n-dimensional

system, i.e., it has n numbers of distinguishable states. Mathematically, a pure

quantum state of the system A represents a vector in the n-dimensional Hilbert

space, denoted by HA. For the bipartite system consisting of system A and B, the

combined state of the systems A and B is defined in the Hilbert space HA ⊗HB,

where HB is an n-dimensional Hilbert space associated with the system B. The

1



Chapter 1. General Introduction 2

above combined state is called entangled if it can not be written as a direct product

of states of the individual system.

1.1.2 Bipartite pure entangled state

A pure quantum state |ψ〉i gives the complete information about the system ‘i’.

Mathematically, any pure state |ψ〉i can be written as the projector ρi (known as

density states of the system ‘i’) given by

ρi = |ψ〉i〈ψ| (1.1)

in the corresponding Hilbert space Hi. ρ
i satisfies the following constraints :

i. Normalization : Tr[ρi] = 1.

ii. Purity : Tr[(ρi)2] = Tr[ρi] = 1.

|Ψ〉AB is said to be bipartite pure entangled state of the combined systems A and

B, if and only if the state |Ψ〉AB can not be written in the following form

|Ψ〉AB = |ψ〉A ⊗ |φ〉B, (1.2)

where |ψ〉A and |φ〉B are any pure states of the system A and B, respectively.

More generally, a bipartite pure entangled state |Ψ〉AB can be written as

|Ψ〉AB =
n∑
i=1

√
λi|ψ〉Ai ⊗ |φ〉Bi , (1.3)

where |ψ〉Ai and |φ〉Bi are orthonormal pure states of the system A and B, respec-

tively, and λi are known as Schmidt co-efficients having the properties λi ≥ 0 and∑n
i=1 λi = 1. For entangled state, the Schmidt number n > 1.

1.1.3 Bipartite mixed entangled state

Mixed state is generally defined as the statistical mixture of pure states where the

mixture arises due to the effect of decoherence. A mixed state ρi of the system ‘i’
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can be written as

ρi =
∑
k

pkρ
i
k, (1.4)

where ρik are the pure state of the system i and the mixed state ρi satisfies the

following criteria

i. Normalization : Tr[ρi] = 1.

ii. Mixedness : Tr[(ρi)2] < Tr[ρi] = 1.

A mixed state ρAB of the combined system A and B is called entangled, if and only

if ρAB can not be written as the mixture of pure product states of the individual

systems, i.e,

ρAB 6=
∑
i

piρ
A
i ⊗ χBi , (1.5)

where the co-efficients pi are positive and satisfy
∑

i pi = 1. ρAi and χBi are pure

states of the system A and B, respectively.

1.2 Measure of mixedness

In the classical information theory, if a random variable X takes different value xn

with different probability pn, then the amount of uncertainty regarding the value

of X (alternatively, how much information we gain, on an average, when we learn

the value of X) is specified by the Shannon entropy [Nielsen and Chuang, 2000].

Note that the uncertainty of the random variable X does not depend on its value

, but depends on its probability distribution {pn}. The Shannon entropy (H(X))

associated with the probability distribution {pn} is defined as

H(X) = −
∑
n

pn log2 pn (1.6)

where
∑

n pn = 1. H(X) is maximum when all values of the random variable occur

with equal probability.
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Let us consider a mixed state of the form given by

ρ =
∑
i

piσi, (1.7)

where σi’s are pure orthogonal states, i.e.,

Tr[σi.σj] = δij, (1.8)

δij is the Kronecker delta. For a general mixed state ρ, the amount of mixedness

is quantified by the von-Neumann entropy [Neumann, 1955; Nielsen and Chuang,

2000] and is given by

S(ρ) = −Tr(ρ log2 ρ). (1.9)

If λi’s are the eigenvalues of density operator ρ, the Eq.(1.9) can be re-expressed

as

S(ρ) = −
∑
i

λi log2 λi. (1.10)

S(ρ) has maximum value for maximally mixed states (i.e., completely mixed den-

sity operator) and the maximum value for d-dimensional Hilbert space (for exam-

ple, d=2 represents qubit system) is log2 d.

1.2.1 Linear entropy

The linear entropy is linear approximation to the Von Neumann entropy. It is

obtained by approximating ln ρ with the first order term (ρ− 1) in the Mercator

series which is the Taylor series for the natural logarithm. Using Eqs.(1.9) and

Tr(ρ) = 1, we get

SL(ρ) = 1− Tr(ρ2) (1.11)

In the d-dimensional Hilbert space, the maximum value of SL(ρ) which occurs for

the maximally mixed state (e.g., ρ = I
d
), is d−1

d
and the minimum value of SL(ρ)

is zero for any pure state. Sometime, SL is written with normalization as

SL(ρ) =
d

d− 1
(1− Tr(ρ2)) (1.12)
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such that, SL(ρ) lies within the range 0 ≤ SL(ρ) ≤ 1.

For the two qubit state ρAB, the linear entropy is

SL(ρAB) =
4

3
(1− Tr(ρAB2

)) (1.13)

The linear entropy and von-Neumann entropy are similar measures for the mixed-

ness of a state, although the linear entropy is easier to calculate because it does

not require the diagonalization of the density matrix.

1.3 Quantification of entanglement

Quantification of entanglement is essential for the purpose of qualifying and quanti-

fying the success probability of different information processing tasks (e.g., quan-

tum teleportation, quantum cryptography, super dense coding and so on) per-

formed with the help of entanglement. Maximally entangled states give highest

success probability. By calculating the amount of entanglement possessed by an

entangled state, we quantify the success probability, i.e., the usefulness of the

entangled state in the corresponding information processing task.

The amount of entanglement contained in an entangled state can be quantified

in terms of the number of maximally entangled state needed to create the given

state, or how many maximally entangled states can be prepared from the given

entangled state with the help of local operations and classical communication

(LOCC). LOCC can not increase the entanglement on average. Now, every good

entangled measure E should satisfy the following property :

I. The amount of entanglement contained in any separable state ρ should be

zero, i.e., E(ρ) = 0.

II. The amount of entanglement contained in any state ρ should be unaffected

for any local unitary transformation of the form UA⊗UB, i.e., E(ρ) = E(UA⊗
UBρU

†
A ⊗ U

†
B).

III. The amount of entanglement can not be increased on average by apply-

ing local operation, classical communication and sub-selection, i.e., E(ρ) ≥∑
i piE(ρi), where pi denotes the probability of occurring the state ρi.
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IV. The amount of entanglement of the two given pair of entangled particles in

the state ρ = ρ1⊗ ρ2 should have E(ρ) = E(ρ1) + E(ρ2), where ρ1 and ρ2 are

the pair of entangled states of the particles.

1.3.1 Entanglement measure for pure states

1. Entropy of Entanglement : In the case of a bipartite pure entangled state

|Ψ〉AB shared between the system A and B, the amount of entanglement reduces

the information about the subsystem, and the state of the combined system con-

tains the complete information. For example, for the shared maximally entangled

state (whose entanglement is maximum), the subsystems are in completely mixed

states. Hence, the entanglement of a bipartite pure state is quantified by the

von-Neumann entropy of the subsystems given by

E(|Ψ〉AB) = S(ρA) = S(ρB), (1.14)

where ρA (= TrB(|Ψ〉AB〈Ψ|)) and ρB (= TrB(|Ψ〉AB〈Ψ|)) are the reduced den-

sity matrices of Alice’s and Bob’s system obtained by taking partial trace of the

combined state, ρAB over Bob’s system and Alice’s system, respectively.

1.3.2 Entanglement measure for bipartite mixed states

In the literature, there are many measures of entanglement for the bipartite mixed

state (see the recent review [Horodecki et al., 2009]) given by

ρAB =
n∑
i=1

piρi, (1.15)

where ρi (= |ψ〉ABi 〈ψ|) is the density matrices of the bipartite pure state |ψ〉ABi .

In this thesis, we mention a few of them.

1. Entanglement of formation : It measures the minimum amount of en-

tanglement required to prepare a quantum state. The entanglement of formation

EF of a bipartite mixed state ρAB is defined by [Chen, Albeverio, and Fei, 2005;
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Wootters, 1998]

EF (ρAB) = min
ρAB

n∑
i=1

piE(|ψ〉ABi 〈ψi|), (1.16)

where the minimization is taken over all possible decompositions of the density

operator ρAB. Entanglement of formation gives the upper bound of all possible

entanglement measures [Horodecki et al., 2000] of the state ρAB.

2. Entanglement of distillation : It measures the number of maximally entan-

gled states, extracted with the help of LOCC from n copies of ρAB. It is defined

as

ED(ρAB) = lim
m→∞

m

n
, (1.17)

where m is the number of extracted maximally entangled states. ED gives the lower

bound of all possible bipartite entanglement measures [Horodecki et al., 2000] of

the state ρAB.

3. Negativity : Peres [Peres, 1996] and Horodecki et al. [Horodecki et al., 1998]

found a criteria to detect bipartite entanglement. This criteria for detection of

entanglement is a necessary and sufficient condition for 2⊗2 and 2⊗3 dimensional

Hilbert space. Before going to the details of this criteria, we recapitulate the par-

tial transpose. The elements of density operator (say, bipartite density operator

ρAB) in some product basis ρmµ,nνAB = 〈mµ|ρAB|nν〉, the kets with Latin and Greek

letters form an orthogonal basis in Hilbert space describing the first and second

system respectively. Now, partial transpose of ρ is defined as (ρmµ,nνAB )TB = ρmν,nµAB .

The theorems associated with partial transposition are given below

Theorem 1 : For a given bipartite state ρAB, if at least one eigenvalue of ρTBAB is

negative, then the state ρAB is entangled, and also known as NPT-state (negative

partial transpose- state)

Theorem 2 : If all eigenvalue of ρTBAB is positive, then the state ρAB is said to be

separable, definitely, for 2⊗2 and 2⊗3 dimensional Hilbert space. Otherwise, one

can not conclude about separability and entanglement of the state.
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The above negative eigenvalues of the state ρTBAB are useful to calculate the amount

of entanglement of ρAB and this amount is given by

EN(ρAB) =
||ρTBAB|| − 1

d− 1
, (1.18)

where ||.|| denotes the trace norm and d is the smaller of the dimension of the

bipartite system.

4. Concurrence : Concurrence is a measure of entanglement for two qubit

systems, where qubit is a quantum bit which can take value either 0 or 1 or any

superposition of them, whereas classical bit (cbit) is either 0 or 1. In general, the

state of a qubit is given by

|ψ〉qbit = α|0〉+ β|1〉, (1.19)

where the complex coefficients satisfy |α|2 + |β|2 = 1 and {|0〉, |1〉} form basis

states of the qubit system. The concurrence of mixed entangled state ρAB is

defined by [Wootters, 1998]

C(ρAB) = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4), (1.20)

where λi’s are the eigenvalues of the matrix ρ
1
2
AB(σy ⊗ σy)ρ

∗(σy ⊗ σy)ρ
1
2
AB in the

decreasing order, i.e., λ1 ≥ λ2 ≥ λ3 ≥ λ4. ‘∗’ denotes the complex conjugation and

σy denotes the Pauli operator. The concurrence is related with the entanglement

of formation by the equation [Wootters, 1998]

EF (ρAB) = H[
1

2
(1 +

√
1− C(ρAB))]. (1.21)

5. Rényi entropy : The Rényi entropy of the order α is defined as

Hα(ρAB) =
1

1− α
log2

(∑
i

λαi

)
, (1.22)

where α ≥ 0, α 6= 1 and λi’s are eigenvalues of ρAB. In particular, von-Neumann

entropy is obtained in the limit of ‘α→ 1’ from the Eq.1.22. Finally, in the limit

of α→∞, the Rényi entropy is of the form given by

H∞(ρAB) = − log2

(
max
i
λi

)
. (1.23)
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H∞(ρAB), known as the single-copy entanglement, measures the amount of max-

imally entangled state extracted from a single copy of ρAB [Eisert and Cramer,

2005].

1.4 Entanglement : the non-local correlation

The correlation of measurement outcomes for the measurement of observables on

the individual components of an entangled system is not always explained with

the help of classical theory [Bell, 1964; Clauser et al., 1969; Collins et al., 2002;

Mermin, 1990; Svetlichny, 1987]. With the assumption of Locality and Reality

principle given by [Bell, 1964; Einstein, Podolsky, and Rosen, 1935]

Locality principle : If two system are causally disconnected, the result of any

measurement performed on one system can not influence the result of mea-

surement performed on the second system. Following the theory of relativity,

we say that two measurement events are disconnected if (∆x)2 > c2(∆t)2,

where (∆x) and (∆t) are the space and time separation of the two events in

some inertial frame and c is the speed of light.

Reality principle : If we can predict with certainty the value of a physical

quantity, then this value has physical reality, independently of our observa-

tion.

J. Bell, first introduced an inequality called Bell’s inequality [Bell, 1964] under the

assumption of the locality and reality principle, and showed that the presence of

entanglement may violate the above inequality. Bell’s inequality is given by [Bell,

1964; Clauser et al., 1969]

BCHSH = |〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉| ≤ 2, (1.24)

where Alice randomly measures either the observable A0 or the observable A1 on

her system and similarly, Bob randomly measures either the observable B0 or the

observable B1 on his system. It was shown that in the two qubit system, for the

choice of state |Ψ〉AB given by

|Ψ〉AB =
|01〉AB − |10〉AB√

2
, (1.25)
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where |0〉i (|1〉i) is spin up (spin down) state of the spin-1/2 particle labeled by i

(∈ {A,B}) and for the choice of observables, given by

A0 = σx B0 = −σz + σx√
2

A1 = σz B0 =
σz − σx√

2
, (1.26)

BCHSH = 2
√

2 [Clauser et al., 1969]. The above violation (2
√

2) is maximum

and occurs for a maximally entangled state given by Eq.(1.25). Such violation is

captured by a number of experiments [Aspect, Dalibard, and Roger, 1982; Aspect,

Grangier, and Roger, 1981, 1982; Pan et al., 2000; Tittel et al., 1998]. Hence,

quantum entanglement is a non-local correlation.

1.5 Applications of entanglement

Entanglement is a useful resource for performing different informational processing

tasks. It was shown that the presence of entanglement outperforms all possible

classical strategies in several informational processing tasks. Such tasks are quan-

tum teleportation [Bennett et al., 1993], super dense coding [Bennett and Wiesner,

1992], quantum cryptography [Bennett and Brassard, 1984; Ekert, 1991] and so on.

The presence of entanglement gives higher winning probability for some non-local

games [Oppenheim and Wehner, 2010; Pramanik and Majumdar, 2012]. In the

presence of entanglement with another system known as quantum memory, it is

possible to reduce the uncertainty for the measurement of two non-commuting

observables on the observed system [Berta et al., 2010; Li et al., 2011; Pramanik,

Chowdhury, and Majumdar, 2013; Prevedel et al., 2011].

1.5.1 Quantum teleportation

In quantum teleportation, Alice’s task is to send quantum information which is

an unknown quantum state of a spin-1/2 particle to Bob, separated at a distant

location. The unknown quantum state of the spin-1/2 particle is given by

|ψ〉1 = a|0〉1 + b|1〉1, (1.27)
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where the above spin-1/2 particle is labeled by subscript ‘1’ (say, 1st particle) and

|a|2 + |b|2 = 1. To perform the above task Alice can use either classical strategy

or quantum strategy.

Classical strategy : Here Alice randomly chooses a direction, say n̂ and makes a

spin measurement along that direction on the given 1st particle. The observable

corresponding spin measurement is n̂.~σ, where σi are the Pauli spin matrices. Alice

sends the measurement outcome to Bob and from the communicated result, Bob

infers about the unknown quantum state of the 1st particle.

The success of this protocol is quantified by the average fidelity given by

Fav = |〈ψ1|ψfinal〉|2, (1.28)

where the average is taken over all possible given states of the 1st particle and

Alice’s measurement outcomes. |ψfinal〉 is the Bob’s prepared state from Alice’s

communicated result. In this case, the success probability Fav is 2/3 [Massar and

Popescu, 1995].

Quantum strategy : Here, initially Alice and Bob share a maximally entangled

state |Ψ〉AB given by Eq(1.25), i.e., the system A (possessed by Alice) and B

(possessed by Bob) are maximally entangled. When Alice gets the 1st particle,

she makes a joint measurement on the 1st particle and the system A in the Bell

basis given by

|ψ±〉AB =
|01〉AB ± |10〉AB√

2
,

|φ±〉AB =
|00〉AB ± |11〉AB√

2
, (1.29)

and communicates the measurement outcome to Bob. To send the possible mea-

surement outcomes to Bob, Alice needs minimum 2 cbits. Alice encodes the mea-

surement outcomes (|ψ±〉AB, |φ±〉AB) by two bit of strings (00, 01, 10, 11) in the

following way

|ψ+〉AB → 00,

|ψ−〉AB → 01,

|φ+〉AB → 10,

|φ−〉AB → 11. (1.30)
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After knowing the measurement outcome, Bob performs a suitable unitary rotation

chosen from the set {I, σx, σy, σz}, where I is the identity matrix, on his system

B to make the fidelity as large as possible. The unitary rotations corresponding

to the 2 bits of classical massages are given by

00 → σz,

01 → I,

10 → iσy,

11 → σx, (1.31)

where i =
√
−1. For the shared maximally entangled state, the average fidelity

Fav becomes unity, i.e., the given state of the 1st particle and the final state of

the system B are same. Note that, after Bell measurement at Alice’s side the

unknown state of the 1st particle is destroyed and by applying suitable unitary

rotation (depending upon Alice’s measurement outcome) on the Bob’s system, the

unknown state reappears. For shared non-maximally entangled states and shared

mixed entangled states, Fav < 1.

Several experiments [Boschi et al., 1998; Pan et al., 1997; Ma et al., 2012] confirmed

the possibility of performing teleporation in the real world and current research is

going on to increase the distance between the sender and the receiver [Ma et al.,

2012]. The importance of the teleportation protocol is the ability of sending an

unknown quantum state to a distant location with the help of pre-shared entan-

glement and 2 cibt communications, whereas classically, the sender must have the

power of infinite communication to send the unknown quantum state.

1.5.2 Super Dense Coding

Sending a two level system classically, the communication from the sender, Alice

to the receiver, Bob is bounded by 1-cbit. But, the presence of entanglement can

beat the above bound – this phenomena is know as super dense coding [Bennett

and Wiesner, 1992]. Using the shared maximally entanglement system, Alice can

send maximally 2-cbit classical information to Bob by sending her system.

In this protocol, Alice’s system, A and Bob’s system, B are in the maximally

entangled state given by Eq.(1.25). Alice makes a unitary rotation chosen from

the set {I, σx, σy, σz} and sends her system to Bob. Here, Bob’s task is to find
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out the particular unitary rotation performed by Alice from the knowledge about

the shared state. Due to the unitary rotation, the singlet state transforms to one

of the Bell basis states given by Eq.(1.29). Now, after getting the particle, Bob

makes a Bell basis measurement. From the measurement outcome, Bob confirms

about the unitary rotation performed by Alice. In this way, Alice communicates

2-cbit given by the map (1.31) to Bob.

1.5.3 Cryptography : BB84 Protocol

To communicate a secret message to Bob over the classical channel, Alice needs

to encode the message with a key. The key prevents others from knowing the

message, i.e., without the key the message is not readable. Using cryptography,

one can build up such a key between Alice and Bob. In classical physics, it is

impossible to build up a completely secure key, i.e., only Alice and Bob know the

key. This impossibility is reflected from the fact that one can know the state of a

classical system without disturbing it.

Quantum physics provides the complete security since the measurement changes

the state of the system, except the measurement performed in the eigenbases.

First, Bennett and Brassard introduced a protocol known as BB84 to generate a

secret key. This protocol is sensitive over any attack by the eavesdropper, say,

Charlie [Bennett and Brassard, 1984].

In this protocol, Alice prepares a particle either in the eigenbasis of σz or in

the eigenbasis of σx, randomly, and sends the particle to Bob. After getting the

particle, Bob randomly makes a spin measurement either along z− or along x−
direction. They repeat this procedure n times. After completing the repetition,

Alice and Bob publicly discuss about the prepared direction (i.e., tells either z-

direction or x− direction) and the measured direction (i.e., tells either z-direction

or x− direction), respectively. They do not tell about the prepared state and the

particular measurement outcome. When their direction matches, they keep the

information about the state of the respective particle which gives the raw key.

For the purpose of security, they randomly choose several raw keys and check

whether the prepared state (by Alice) and the collapsed state (due to Bob’s mea-

surement) of the particle are same or not. There could be some error (i.e., mis-

matching of the prepared state and the collapsed state) due to the presence of
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noise or eavesdropper. If the error is not high, they get a string of numbers by

encoding | ↑z(x)〉 −→ 0 and | ↓z(x)〉 −→ 1, and make privacy amplification from the

rest of the raw key. If the error rate is too high they throw the data and restart

the protocol from the beginning.

In the ‘BB84’ protocol, the security of key is guaranteed by non-commutativity of

the observables σz and σx ,i.e., the eigenstate of one observable has no information

about the measurement outcomes of the another observable.

1.5.4 Cryptography : E91 Protocol

The E91 protocol was invented by Ekert [Ekert, 1991]. It has the same purpose

as BB84. In this protocol, Alice and Bob initially share N numbers of maximally

entangled states, say, singlet state given by Eq.(1.25). For each shared maximally

entangled state, Alice measures the spin on her system where the spin observable

is randomly chosen from the set {A1 = σx,A2 = σx+σy√
2
,A3 = σy}, and similarly,

Bob’s set is {B1 = σx+σy√
2
,B2 = σy,B3 = −σx+σy√

2
}.

After finishing N measurements on their respective systems, Alice and Bob pub-

licly discuss about the N spin observables (only). Further, they only discuss

publicly about their measurement outcomes when their chosen observables do not

match. From the communicated measurement outcomes, they calculate the corre-

lation coefficients given by

C(Ai,Bj) = p++(Ai,Bj) + p−−(Ai,Bj)− p+−(Ai,Bj)

−p−+(Ai,Bj), (1.32)

where i, j = 1, 2, 3. p±±(Ai,Bj) is the probability that Alice’s spin measurement

for the choice of observable Ai gives the result ±1 and Bob’s measurement for

the choice of observable Bj gives ±1. Using the correlation, Alice and Bob check

whether

BCHSH = C(A1,B1)− C(A1,B3) + C(A3,B1) + C(A3,B3)

= −2
√

2 (1.33)
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is satisfied for the shared maximally entangled state. If the supplier of the singlet

state wants to know the key, he provides a state which is entangled with Alice’s

and Bob’s system. In this case |BCHSH| < 2
√

2.

When the Eq.(1.33) holds, Bob flips his measurement outcome, i.e, 0 −→ 1 and

1 −→ 0, where ‘+1(−1)’ measurement outcome is labeled by 0(1). At the end,

they are able to create a secret key string which is unknown from the rest of the

world. The secret key is a result of the anti-correlation between the measurement

outcomes for the measurement of the same observable on the singlet state and the

fact that if two systems A, B are in the singlet state, they are not correlated with

the other system even classically.

1.6 Uncertainty relations and their applications

in quantum information theory

Another fundamental feature of quantum physics is the uncertainty relation [Deutsch,

1983; Heisenberg, 1927; Kraus, 1987; Maassen and Uffink, 1988; Robertson, 1929].

The uncertainty relation limits the precision of measurement outcomes for the

measurement of two non-commuting observables on a single quantum system, i.e.,

when the correlations of the observed system with the other systems (called quan-

tum memory) is not considered. The presence of quantum memory can enhance

the precision of measurement outcomes [Berta et al., 2010; Li et al., 2011; Pra-

manik, Chowdhury, and Majumdar, 2013; Prevedel et al., 2011].

1.6.1 Heisenberg-Robertson uncertainty relation

First, Heisenberg introduced the uncertainty relation for position and momentum

[Heisenberg, 1927] and later, Robertson generalized it for any two arbitrary non-

commuting observables [Robertson, 1929]. The Heisenberg-Robertson uncertainty

relation for the measurement of the observables A and B on the system A prepared

in the density state ρA is given by

∆A∆B ≥ 1

2
|〈[A,B]〉ρA|, (1.34)
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where the uncertainty of measurement outcomes for the measurement of the ob-

servable α (∈ {A,B}) is measured by the standard deviation given by ∆α =√
Tr[α2ρA]− Tr[αρA]2, and the commutator [A,B] = AB − BA.

Latter, the above uncertainty relation was generalized for any two arbitrary observ-

ables which need not be complementary, and the relation is given by [Robertson,

1929; Schrödinger, 1930]

∆A2∆B2 ≥ |〈[A,B]〉ρA
2

|2 + (
〈{A,B}〉ρA

2
− 〈A〉ρA〈B〉ρA)2 (1.35)

where the expectation values are taken over the state ρA and the anti-commutator

{A,B} = AB + BA.

1.6.2 Entropic uncertainty relation

There is an increasing appreciation in recent times of the limitations of the use of

standard deviation as a measure of uncertainty [Bialynicki-Birula and Rudnicki,

2011]. One of the drawbacks of the uncertainty relation in terms of standard

deviation is that the right-hand side of the inequality(1.34) depends on the state

of the quantum system. To improve this situation as well as link uncertainty

with information theoretic concepts, the uncertainty relating to the outcomes of

observables has been reformulated in terms of Shannon entropy instead of standard

deviation. Entropic uncertainty relation (EUR) for two observables A and B was

first introduced by Deutsch [Deutsch, 1983], following with an improved version

given by

H(A) +H(B) ≥ log2

1

c
, (1.36)

first conjectured [Kraus, 1987], and then proved [Maassen and Uffink, 1988]. Here

H(i) denotes the Shannon entropy of the probability distribution of the measure-

ment outcomes of observable i (i ∈ {A,B}) and 1
c

quantifies the complementarity

of the observables. For non-degenerate observables, c = maxi,j |〈ai|bj〉|2, where

|ai〉 and |bj〉 are eigenvectors of A and B, respectively.
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1.6.3 Applications of Uncertainty relations

Uncertainty relations can be used to detect the entanglement in bipartite and

multiparty systems. It was shown that for an entangled system, the uncertainty

relation is violated [Gillet, Bastin, and Agarwal, 2008; Nha, 2007; Song et al.,

2008]. In Chapter 5 we discuss how the presence of entanglement can reduce

the lower bound of EUR, and the application of the modified lower bound in

quantum cryptography [Berta et al., 2010; Li et al., 2011; Pramanik, Chowdhury,

and Majumdar, 2013; Prevedel et al., 2011]. In Chapter 4 we discuss about the

fine-grained uncertainty relation [Oppenheim and Wehner, 2010; Pramanik and

Majumdar, 2012] which can detect the non-local feature of a physical theory.

Entanglement detection : In 2⊗ 2 and 2⊗ 3 dimensions, any entangled state

ρAB has negative partial transpose [Horodecki et al., 1998; Peres, 1996], i.e., ρTBAB

has at least one negative eigenvalue. Hence, ρTBAB is not a valid state and it may

violate the uncertainty relation.

The possibility of switching the partial transpose sign from the state ρAB to the

observables R (which is in the form A1 ⊗ B1), S (which is in the form A2 ⊗ B2),

i.e.,

Tr[αρTBAB] = Tr[αTBρAB], (1.37)

where α {R, S} and αTB represents the observable when Alice chooses the observ-

able Ai and Bob chooses the observable BTi , and the property that the partial

transpose of any observable remains an observable, makes the uncertainty relation

(in terms of standard deviation) capable of detecting entanglement. The new un-

certainty relation which is able to detect entanglement is given by [Gillet, Bastin,

and Agarwal, 2008]

(∆RTB)2(∆STB)2 ≥ |〈[R, S]TB〉ρA
2

|2 + (
〈{R, S}TB〉ρA

2
−〈RTB〉ρA〈STB〉ρA)2. (1.38)

The above uncertainty relation is satisfied by any separable state and violated by

entangled states in the above mentioned dimensions.
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1.7 Decoherence - the interaction between the

quantum system and the environment

In the above description of usefulness of entanglement, the interaction of systems

with the environment has not been considered. In realistic situations, the system

interacts with the environment – this phenomena is known as decoherence. Due to

decoherence, an initially prepared pure state becomes mixed and initially prepared

entangled system after a certain time may become separable [Almeida et al., 2007].

According to the postulates of quantum mechanics, any closed quantum system

evolves under a unitary transformation. Any quantum system together with the

environment forms a closed quantum system. Hence, due to the interaction with

the environment which is initially in the state |e0〉〈e0| (where the set {|ei〉} forms

basis for the state space of environment), the system which is initially in the state

ρ becomes

ρ′ = TrE[U [ρ⊗ |e0〉〈e0|]U †] =
∑
i

〈ei|U [ρ⊗ |e0〉〈e0|]U †|ei〉

=
∑
i

EiρE
†
i , (1.39)

where U represents the interaction of the environment with the system and Ei’s

(where, Ei = 〈ei|U |e0〉) are the operators acting on the state space of the quantum

system. For trace preserving operation,
∑
i

E†iEi = I. The operator Ei’s are

known as Kraus operators.

In the literature, there are various models for the environmental interaction, such

as the bit flip channel, the phase flip channel, the bit-phase flip channel, the

depolarizing channel, amplitude damping and so on for the qubit system. Here,

we discuss about the above interactions.

1.7.1 The bit flip channel

Due to the interaction with the environment, the state of a qubit flips from |0〉 to

|1〉 (and vice versa) with probability p and the state is unaffected with probability
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(1− p). The Kraus operators for the bit flip operation are given by

E0 =
√

1− p I =
√

1− p

(
1 0

0 1

)
,

E1 =
√
p σx =

√
1− p

(
0 1

1 0

)
. (1.40)

1.7.2 The phase flip channel

The environment interacts with the system, such that with probability p, the phase

of the system changes, i.e.,

|0〉 −→ |0〉, |1〉 −→ −|1〉,

and with probability (1 − p), the system is unaffected. In this case, the Kraus

operators are given by

E0 =
√

1− p I, E1 =
√
p σz. (1.41)

1.7.3 The bit-phase flip channel

In this case, due to the environmental interaction, both bit and phase of the system

flips with probability p, i.e.,

|0〉 −→ i|1〉, |1〉 −→ −i|0〉.

The kraus operators are given by

E0 =
√

1− p I, E1 =
√
p σy. (1.42)

1.7.4 The depolarizing channel

In this case, the environmental interaction transforms the initial qubit state ρ

to the completely mixed state, i.e., I/2 with probability p and with probability
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(1− p), the system is left unchanged. Here, the Kraus operators are

E0 =
√

1− p I, E1 =

√
p

3
σx,

E2 =

√
p

3
σy, E3 =

√
p

3
σz. (1.43)

The importance of the depolarizing channel is that if the singlet state (given by

Eq.(1.25)) interacts with the environment via the depolarizing channel, it becomes

the Werner state [Werner, 1989] which play an important role in quantum infor-

mation processing.

1.7.5 Amplitude damping

This interaction captures the energy dissipation, i.e., the loss of energy of the

two level quantum system by spontaneous emission. The interaction between the

system and environment is given by

|0〉S ⊗ |0〉E −→ |0〉S ⊗ |0〉E (1.44)

|1〉S ⊗ |0〉E −→
√

1−D|1〉S ⊗ |0〉E +
√
D|0〉S ⊗ |1〉E,

where the subscript S and E label the system and the environment. Initially, the

environment is in the zero photon state (|0〉E). If the system is in the ground state

(|0〉S), the system does not interact with the environment, but, when the system is

in the exited state (|1〉S), with probability D, the system moves to ground state by

loosing a photon, and the environment moves to a one photon state by absorbing

it . A feature of amplitude damping is that it could be controlled by the technique

of weak measurement and its reversal [Kim et al., 2009; Lee et al., 2011].

1.8 Outline of thesis

In this thesis, the non-local correlation present in quantum mechanics and their

applications are studied. The brief outline of each of the following chapters is

given below.

In Chapter-2, we discuss different existing experimental proposals for showing the

presence of non-locality at the single particle level and their criticisms. Then we
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discuss the possibility of showing non-locality at the single particle level using

atom-cavity interactions [Pramanik et al., 2012].

In Chapter-3, we use the non-local correlation present in a single particle to send

the information about an unknown quantum state at a distant location, securely

[Pramanik et al., 2010]. For the above purpose, we create a path-spin entangled

state with the help of a beam splitter and a spin flipper. Our protocol is different

from the teleportation protocol where 2-particle entanglement between the sender

and the receiver is necessary.

In Chapter-4, we study a new uncertainty relation called fine-grained uncertainty

relation where the uncertainty is measured in terms of any combination of possi-

ble measurement outcomes. When the uncertainty is measured in a coarse grained

way, the corresponding uncertainty relation is unable to capture the non-local cor-

relation present in quantum mechanics. But, the fine-grained uncertainty relation

can discriminate between different physical theories according to the degree of

non-locality of the corresponding physical theory for both bipartite and tripartite

systems [Pramanik and Majumdar, 2012].

In Chapter-5, we discuss the possibility of reduction of uncertainty for the mea-

surement of two non-commuting observables by accessing the correlation of the

observed system with the quantum memory. Here, using the fine-grained uncer-

tainty relation, we obtain the optimal reduction in quantum uncertainty in an

experimental situation [Pramanik, Chowdhury, and Majumdar, 2013]. The secret

key rate in quantum cryptography is lower bounded by the above reduction.

In Chapter-6, we study the entanglement and teleportation fidelity when the sys-

tems interact with the environment via amplitude damping decoherence. We show

that using the technique of weak measurement, the enhancement of teleportaion

fidelity is not equivalent with the enhancement of entanglement [Pramanik and

Majumdar, 2013].

In the last chapter (Chapter-7), we summarize the main results obtained in this

thesis and discuss future directions of study.
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Non-locality at the single particle

level

The degree of violation of Bell’s inequality given by Eq.1.24 (or generalized forms

of Bell’s inequality for more particles) signifies the degree of non-locality of a

quantum state of two [Bell, 1964; Clauser et al., 1969] or more particles [Collins et

al., 2002; Mermin, 1990; Svetlichny, 1987]. For the single particle case, there is no

such inequality because the measurement of the particle at one location excludes

the measurement of the same particle at another location. If non-locality is to be

regarded as an inherent feature of the quantum world, it is difficult to understand

why this feature should be manifest only at the level of two or more particles. A

quantum state should reveal its non-local property irrespective of the number of

particles associated with it.

Young’s interference experiment performed by Grangier, Roger, and Aspect [Grang-

ier, Roger, and Aspect, 1986] showed the interference fringes even for the incident

of a single photon on the two slits – which is not possible to explain classically.

But, quantum physics explains the possibility of the interference pattern by allow-

ing the accessibility for the photon in the both paths simultaneously. A number

of works have been performed in the direction of capturing non-locality of single

particle states [Dunningham and Vedral, 2007; Grangier, Roger, and Aspect, 1986;

Hardy, 1993, 1994; Home and Agarwal, 1995; Tan, Walls, and Collett, 1991].

22
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2.1 Non-locality of a single photon proposed by

Tan, Walls and Collett

Tan, Walls and Collett (TWC) proposed an experimental scheme to demonstrate

the non-locality of a single photon. This scheme was criticized by Hardy [Hardy,

1994] and Greenberger, Horne and Zeilinger (GHZ) [Greenberger, Horne, and

Zeilinger, 1995].

2.1.1 Experimental setup

The experimental setup proposed by TWC [Tan, Walls, and Collett, 1991] is shown

in the Figure 2.1. In the experimental procedure, the experimentalist, say Charlie,

performs two different experiments by preparing the two different states by sending

– (i) vacuum in each mode ‘u’ and ‘v’ and (ii) vacuum in the mode ‘v’ and single

photon in the mode ‘u’ at the 50 − 50 beam splitter BS3. The output modes b1

and b2 are sent to Alice and Bob, respectively. Alice (Bob) uses the homodyne

detector ‘HD1’ (‘HD2’) to measure the intensity from the probability of response

of the detector ‘HD1’ (‘HD2’). Each homodyne detector consists of a 50 − 50

beam splitter (i.e., the homodyne detectors HD1 and HD2 have BS1 and BS2,

respectively), a coherent local oscillator with amplitude αk = α exp[iθk] (where

k = 1 (2) for HD1 (HD2)), and two photodetectors in the output ports of the each

BS1 abd BS2. In this experiment Alice and Bob both measure the probability of

the response of individual photodetectors and the coincidence probabilities for the

pair of photodetectors. Note that weak oscillators (i.e., α is small compared to 1)

are used in the homodyne detectors and for that it is very rare to get coincidence

count due to oscillators.

2.1.2 Experimental result

Case-I. Here, we consider the vacuum inputs in the two modes ‘u’ and ‘v’. The

intensities at the output modes ‘c1’, ’d1’ of the homodyne detector HD1 and ‘c2’,

‘d2’ of the homodyne detector HD2 are given by [Tan, Walls, and Collett, 1991]

〈Ic1〉 = 〈Id1〉 = 〈Ic2〉 = 〈Id2〉 =
α2

2
, (2.1)



Chapter 2. Non-locality at the single particle level 24

where the intensity is calculated from the probability of the response of individual

photodetectors. The two-photon coincidence rates which occur due to the local

oscillator are given by [Tan, Walls, and Collett, 1991]

〈Ic1Ic2〉 = 〈Ic1Id2〉 = 〈Id1Ic2〉 = 〈Id1Id2〉 =
α4

2
(2.2)

Case-II. Now, we send a single photon through the mode ‘u’ and vacuum through

the mode ‘v’. The state after passing through the beam splitter BS3 is given by

[Tan, Walls, and Collett, 1991]

|ψP 〉 =
1√
2

(i|1〉b1|0〉b2 + |0〉b1|1〉b2), (2.3)

where 1st ket in each term represents the particle number on the path b1 and

second ket represents the particle number on the path b2. Here, |ψP 〉 is the maxi-

mally entangled state where the entanglement is created over the particle number

found on the two paths.

In this case the intensities at each detector are given by [Tan, Walls, and Collett,

1991]

〈Ic1〉 = 〈Id1〉 = 〈Ic2〉 = 〈Id2〉 =
α2

2
+

1

4
, (2.4)

where the enhancement amount 1
4

shows the effect of one photon entering through

the input modes. The coincidence count probabilities are given by [Tan, Walls,

and Collett, 1991]

〈Ic1Ic2〉 = 〈Ic1Id2〉 =
1

4
[α4 + α2(1 + sin(θ1 − θ2))]

〈Id1Ic2〉 = 〈Id1Id2〉 =
1

4
[α4 + α2(1− sin(θ1 − θ2))]. (2.5)

Hence, the coincidence probabilities depends on the phase difference between the

local oscillators in the homodyne detectors HD1 and HD2. The above coincidence

probabilities are bounded between [α
2

4
, (α

4

4
+ α2

2
)].

The enhancement of the intensity at individual detectors in the case-II are easily

understood from the incident of a single photon. The enhancement of the coinci-

dence count is unable to be explained from the classical description of light, but,

quantum mechanical analysis allows the presence of such correlation [Tan, Walls,
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and Collett, 1991]. This captures the non-local feature of quantum mechanics at

the single particle level.

2.1.3 Criticism

The above formulation was criticized by Hardy [Hardy, 1994]. According to Hardy,

the proposal would fail if one were to choose to measure wave-like properties in-

stead of particle-like ones. The measurement of wave-like properties would re-

quire a reference oscillator, thereby introducing additional particles, and putting

in doubt the notion of single particle non-locality. Hardy gave a new experimental

proposal to reveal the non-local feature at the single particle level.
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Figure 2.1: Experimental setup proposed by Tan, Walls and Collett [Tan, Walls,
and Collett, 1991]

2.2 Non-locality of a single photon proposed by

Hardy

In the work [Hardy, 1994], Hardy overcame the flaw in TWC’s proposal. He

considered a similar experimental configuration (given by the Figure 2.1) to the
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one considered by TWC, but his analysis is completely different from TWC. In

the analysis, he considered four different experiments and showed that the four

experiments contradict each other under the assumption of locality.

2.2.1 Four different experiments and the contradiction

State preparation : Here, the input states of the BS3 are a vacuum state, |0〉v
and q|0〉u +

√
2
3

exp(iφ)|1〉u (i.e., the superposition of vacuum and a particle, say

photon). For simplicity, we choose q = 1√
3

and r =
√

2
3

exp(iφ). The state at the

output of BS3 is given by

|ψ〉BS3 =
1√
3

[|00〉b1b2 + exp(iφ)|01〉b1b2 + i|10〉b1b2, (2.6)

where the subscript b1 and b2 labels the output mode of BS3. Now, Alice and Bob

either measure the photon number directly on the path b1 and b2, respectively,

or with the help of homodyne detectors. Alice and Bob makes four different

experiments by choosing four different measurement setups.

Experiment-1 : In this experiment, Alice and Bob directly measure the photon

number by putting a detector in the paths b1 and b2, respectively. It is clear from

the the state |ψ〉BS3 (given in the Eq.(2.6)), Alice and Bob both cannot detect a

photon as input photon number is bounded by 1. Hence, the detection of a photon

by Alice prohibits the detection of another photon by Bob or vice versa.

Experiment-2 : Here, Alice measures the photon number using homodyne

detection ‘HD1’ (shown in the Figure 2.1) in the path b1, whereas Bob directly

measures the photon number in the path b2. In the homodyne detection Alice

uses the coherent state, |α1〉 = | − exp(iφ)〉. If Bob gets zero photon on the path

‘b2’, the state on the path ‘b1’ is

|ψb1〉 =
1√
2

[|0〉u2 + i exp(iφ)]. (2.7)

After passing through the BS1, the above state becomes

|ψc1d1〉 = |00〉c1d1 + i
√

2 exp(iφ)|10〉c1d1 + .... (2.8)
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where more than one particle terms are neglected due to negligibly small co-

efficients. Hence, when Bob gets no photon on his path, Alice only gets a photon

on the path ‘c1’ which is contributed from the second term of the RHS of Eq.(2.8).

Reversing this argument, i.e., if Alice gets a photon on the path ‘d1’, Bob can not

detect no photon, i.e., Bob detects a photon on the path ‘b2’.

Experiment-3 : This is similar to the ‘Experiment-2’, except here Bob measures

the photon number using the setup ‘HD2’ and Alice measures the photon number

directly on the path ‘b1’. Similarly, if Bob detects a photon on the path ‘d2’ and

nothing at ‘c2’, Bob infers that Alice must detect a photon on the path ‘b1’.

Experiment-4 : Here, both Alice and Bob measure the photon number using

the homodyne detectors. There is a nonvanishing probability that Alice gets a

photon in the path ‘d2’ and no photon in the path ‘c2’, and Bob gets a photon in

the path ‘d1’ and no photon in the path ‘c1’.

Contradiction : The results of ‘Experiment-2’, ‘Experiment-3’ and ‘Experiment-

4’ contradict with the results of ‘Experiments-1’. The above contradiction occurs

due to our assumption of locality, i.e., Bob’s (Alice’s) measurement outcomes does

not depend on the choice’s of Alice’s (Bob’s) measurement settings. Hence, the

violation itself shows the non-local behavior of quantum mechanics in the single

particle level.

2.2.2 Criticism and improvements

In the Ref. [Greenberger, Horne, and Zeilinger, 1995], GHZ also criticized the

above proposal. According to GHZ, Hardy’s proposal [Hardy, 1994] is unable

to be performed in an experiment, and it shows the multiparticle non-locality.

Later, Dunningham and Vedral (DV) [Dunningham and Vedral, 2007] overcame

the all criticism in their proposal. But, DV’s proposal relies on using a mixture of

coherent states, and is yet to be implemented experimentally. Hence we have given

another experimental proposal [Pramanik et al., 2012] which relies on atom cavity

interactions, and may finally be able to suggest an implementable experimental

avenue regarding this conceptually appealing, but as yet not universally accepted

notion of single particle non-locality.
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2.3 Testing non-locality of single photons using

cavities

In [Pramanik et al., 2012], we have given an experimental proposal for demonstrat-

ing non-locality of single photons inside cavities. Our proposal is based on atom-

photon interactions in cavities, a well-studied arena on which controlled experi-

ments have been performed for many years now [Raimond, Brune, and Haroche,

2001]. Here we use two-level atoms and single mode high-Q cavities which are

tuned to resonant transitions between the atomic levels. For example, the use

of Rydberg atoms and microwave cavities in testing several fundamental aspects

of quantum mechanics have been proposed, and various interesting experiments

have been performed by keeping dissipative effects under control (for details see

the review [Raimond, Brune, and Haroche, 2001]). Before going to experiments,

first we describe the atom-cavity interaction dynamics.

2.3.1 Atom-cavity interaction dynamics

When a two level atom passes through a cavity which is initially in the vacuum

state |0〉c, the dynamics of the atom is governed by the Jaynes-Cummings inter-

action Hamiltonian [Angelakis and Knight, 2002; Raimond, Brune, and Haroche,

2001; Vats and Rudolph, 2001]. The Jaynes-Cummings Hamiltonian under the

dipole and rotating wave approximations is given by by

HJC = ~ωegσz + ~ω(a†a+
1

2
) + ~G(r)(aσ+ + a†σ−), (2.9)

where a and a† are the photon annihilation and creation operators in the sin-

gle mode cavity, and σz, σ+ (σx + σy) and σ− (σx − σy) are atomic pseudospin.

ωeg and ω are the transition frequency of two level atom and defect mode fre-

quency, respectively. The atom-field coupling strength may be expressed as G(r) =

Ω0(d̂eg.ê(r))f(r), where Ω0 is the peak atomic Rabi frequency, d̂eg is the orienta-

tion of the atomic dipole moment, and ê(r) is the direction of electric field vector

at the position of the atom. The profile f(r) has an exponential envelop centered

about the point in the atom’s trajectory that is nearest to the center of the cavity,

r0 [Angelakis and Knight, 2002; Vats and Rudolph, 2001]. Within this envelope,
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the field intensity oscillates sinusoidally, and for the fixed dipole orientation, vari-

ations in the relative orientation of the dipole and electric field gives a sinusoidal

contribution, i.e.,

f(r) = e
−|r−r0|
Rdef cos

[
π

al
(r − r0)

]
, (2.10)

where Rdef defines the spatial extent of the mode which is at most a few times the

lattice constant (al) for a strongly confined mode in a photonic band-gap [Vats

and Rudolph, 2001].

Let us consider an atom which is initially in an excited state (|e〉a) passes through

the cavity which is initially in the zero photon state. Due to the interaction

governed by the Hamiltonian HJC , the atom-cavity state becomes

|φe〉 = α1|e〉a|0〉c + α2|g〉a|1〉c, (2.11)

where |g〉a is the ground energy state of the atom, |α1(2)|2 which gives the prob-

ability of finding the atom in the exited (ground) state after passing through the

cavity is given by

α1 = cos

[∫ t

0

G(t′)dt′
]

α2 = sin

[∫ t

0

G(t′)dt′
]
, (2.12)

where t is the the interaction time of the atom with the cavity. The exact form of

the α1(2) is given by

α1(2) = cos(sin)

2alRdefΩ0ke
− b
Rdef (ale

b
Rdef π +Rdef sin(πb

al
)− al cos(πb

al
))

v(a2
l + π2R2

def )

 ,(2.13)

where k = d̂eg.ê(r) and (r− r0) is replaced by (vt− b) with v being the velocity of

the atom in the cavity, 2b is the effective length of interaction in the cavity and the

interaction time t = 2b
v

. Following [Angelakis and Knight, 2002], we henceforth set

al = 624 nm = Rdef , b = 10Rdef , and Ω0 = 1.1× 1010rad/s in our calculations.
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2.3.2 State preparation

Let us consider two spatially separated observers Alice and Bob possess two cavity

C1 and C2, respectively. With the help of an atom a1 and a detector D1, they pre-

pare the cavities C1 and C2 in a particular state to accomplish further experiments

to show the presence of non-locality at the single particle level.

In the state preparation procedure (shown in the Figure 2.2), Alice and Bob pre-

pare cavity C1 and C2 in the zero photon state, i.e., in the state |0〉C1 and |0〉C2 ,

respectively. Now, an atom a1 prepared in the exited state |e〉a1 traverses through

the cavity C1 with flight time t11 and then subsequently through the cavity C2

with flight time t12. The cavities are tuned to the resonant frequency, i.e, ωeg = ω.

Before detecting the atom a1, a π
2
R1 Ramsey pulse which causes the transitions

given by

|e〉 → |e〉 − |g〉√
2

|g〉 → |e〉+ |g〉√
2

, (2.14)

is applied at the exit point of the C2. Let us consider the case when the atom

a1 is detected in the state |g〉a1 at the detector D1 used in the state preparation

process. Since the atom is initially prepared in its exited state and the two cavities

are prepared in the zero photon state, the atom can make a transition to its lower

state only by release of a single photon in either of the two cavities. After detection

of the atom a1 in the state |g〉a1 , two cavities C1 and C2 are in the one photon

state given by [Pramanik et al., 2012]

|ψ〉 = −α1(t11)α1(t12)|0〉C1|0〉C2 + α2(t11)|1〉C1|0〉C2

+α1(t11)α2(t12)|0〉C1|1〉C2 (2.15)

where the second (third) term on the r.h.s. represents the single photon in the

cavity C1 (C2) and no photon in cavity C2 (C1). The first term arises as a result

of π
2
R1 pulse introduced as part of the detection mechanism. Note that though

the state given in the Eq.(2.15) is similar to the single photon state used by Hardy

[Hardy, 1994] and Dunningham and Vedral [Dunningham and Vedral, 2007] in
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Figure 2.2: Experimental setup for creating the state given by Eq.(2.15). A two-
level atom in its upper level traverses the cavities C1 and C2 , before being detected in

its lower level by the detector D1.

their arguments on single photon non-locality, the physical constituents are quite

different.

2.3.3 The scheme

After preparing the state, both Alice and Bob either measure directly the photon

number of their respective cavities or make a local operation on their cavities and

then measure the cavity photon state. Thus, there are four different experiments.

In the local operation, another cavity in zero photon state and an exited atom

are taken. We consider the case when the auxiliary atom is detected in the exited

state. Hence, the additional particle will not cause additional non-locality to be

introduced in the state given by Eq.(2.15).

Operationally, to measure the cavity photon state Alice (Bob) has to take an

auxiliary atom in a ground state and pass it through her (his) cavity with a chosen

parameter v = 161 m/s and k = 1 (making α1 = 0 and α2 = 1 in the Eq.(2.11)).

If Alice detects the atom in the exited state, the cavity looses one photon to the

atom which goes to the exited state. On other hand, when the cavity is in zero

photon state the auxiliary atom is detected in ground energy state.

Experiment-1 : In this case, both Alice and Bob measure the cavity photon

state inside their respective cavities, i.e., in C1 and C2, respectively. As an initially

prepared exited atom a1 is detected in ground state, it releases one photon either

inside C1 or C2. Hence, the term |1〉C1|1〉C2 is absent in the Eq.(2.15) and it makes
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impossible to get one photon by each of them inside their respective cavities, i.e.,

detecting one photon by Alice and one photon by Bob never happens together.

Experiment-2 : In this case, after preparing the state given by Eq.(2.15), Alice

directly measures the photon state inside her cavity C1, as Experiment-1. Before

measuring the cavity photon state of C2, Bob applies a local operation on it (see

the Figure 2.3). In the local operation, Bob takes an auxiliary cavity C3 in zero

photon state, i.e, |0〉C3 and passes an auxiliary atom a2 which is initially in the

exited state, i.e., |e〉a2 through C3 and C2 with flight times t23 and t22, respectively.

Before detecting the atom a2 at the detector D3, Bob applies a π
2
R1 pulse on it.

Bob applies the local operation (as stated above) when Alice detect no photon

inside her cavity C1. The probability of getting zero photon inside the cavity C1

is given by α2
1(t11). Bob will consider the case when the initially exited atom a2

is detected in the state |e〉a2 at D3. Hence, effectively, the atom a2 does not loose

any energy during its flight. By choosing the velocity of a2 (corresponding to the

flight time t22) through the cavity C2 to be va2 = 161 m/s and k(a2;C2) = 1, the

combined state of C2 and C3 is given by

|ψ〉B = N1((−α1(t12)α1(t23) + α2(t12)α1(t23))|1〉C2|0〉C3

−(α1(t12)α2(t23) + α2(t12)α2(t23))|0〉C2 |1〉C3), (2.16)

where, N1 = 1/
√

1− 2α2(t12)α1(t12)(α2
1(t23)− α2

2(t23)). Note here that the above

choice of va2 and k(a2 : C2) rules out the occurrence of two photon state, i.e.,

|1〉C1|1〉C3 (since α1(t22) = 0 and α2(t22) = 1). Further, it is clear from the

Eq.(2.16) that the choice of the velocity va1 = 179 m/s and k(a1 : C2) = 1 (i.e.,

α1(t12) = α2(t12) = 1/
√

2) (the coefficient of |1〉C2|0〉C3 vanishes) force Bob to

get the photon in the cavity C3 only, and not in the cavity C2. In other words,

with the above parameters, when Alice detects no photon in her cavity C1, if Bob

detects a single photon, it must be in the cavity C3, and not in the cavity C2. Now,

reversing this argument, if Bob detects a photon in cavity C2, and nothing in C3

(it follows from Eqs.(2.15) and (2.16) that such an outcome occurs with a finite

probability given by (1 − α2
1(t11)α2

2(t23))), then Alice cannot detect no photons

inside her cavity C1 , i.e., she must detect a single photon there, since this is the

only other possible outcome [Pramanik et al., 2012].

Note here that in the above argument we have considered that Bob’s auxil-

iary atom a2 (which was initially in exited state) is detected in the exited state
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|e〉a2 . However, it also possible to make a similar argument when the atom is

detected in the ground state |g〉a2 , but the only difference between the two cases

are the values of the experimental parameters required for the scheme to work

out. For example, in this case, the combined state of the cavities C2 and C3

is N1[−α1(t23)(α1(t12) + α2(t12))|1〉C2|0〉C3 + α2(t23)(α2(t12) − α1(t12))|0〉C2|1〉C3 ],

where N2
1 = 1/(1 + 2α1(t12)α2(t12)(α2

1(t23) − α2
2(t23))), with the probability of

detection of a2 in ground state being 1/(2N2
1 ). In this case , Bob has to chose

va1 = 146 m/s (instead of 179 ms as required in the former case) in order to get a

photon in the cavity C3 and not in C2.

Figure 2.3: Setup for Experiment 2. Alice checks directly for a photon in cavity C1.
Bob passes the atom a2, initially in the exited state, through the C3 and C2, before

detecting it at D3 again in its exited state.

Experiment-3 : This experiment is similar to the Experiment-2, but, the role

of Alice and Bob are reversed. Bob checks directly the cavity photon state of his

cavity C2 and Alice checks the photon state of her cavity C1 after making local

operations on it (see the Figure 2.4). Here Alice takes an auxiliary atom a3 in

the state |e〉a3 and sends it through the auxiliary cavity C4 chosen in zero photon

state |0〉C4 , and subsequently the cavity C1 which is prepared in the state given

by Eq.(2.15) with flight time t34 and t31, respectively. Before detecting the atom

a3 at the detector D3, Alice applies a π
2
R1 pulse on it.

Now consider the case, when Bob’s measurement reveals zero photon state of his

cavity C2 and a3 is detected in |e〉a3 . Then by choosing the values va3 = 161 m/s
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and k(a3;C1) = 1 to discard the occurrence of the two photon state, the combined

state of C4 and C1 are given by

|ψ〉A = N3(αt34(−α1(t11)α1(t12) + α2(t11))|0〉C4|1〉C1

−α2(t34)(α1(t11)α1(t12) + α2(t11))|1〉C4|0〉C1) (2.17)

with N3 = 1/(
α2

1(t11)

2
+α2

2(t11)−
√

2α1(t11)α2(t11)(α2
1(t34)−α2

2(t34)))1/2. To rule out

the possibility of detecting the photon in the cavity C1, Alice chooses α1(t12) =
1√
2

and sets the velocity of a1, va1 to be 179 m/s and k(a1;C1) = 0.979 (i.e.,

α1(t11) =
√

2α2(t11)). Hence, Alice only gets the photon in the cavity C4, but not

in C1. In the event, when Bob detects no photon in his cavity C2 and if Alice

detects a single photon, it must be in the cavity C4 and not in the cavity C1. Now,

reversing that argument, if Alice detects a photon in the cavity C1 and nothing in

the cavity C4 (which follows from Eqs.(2.15) and (2.17)), Bob can not detect no

photon in his cavity C2, i.e., he must detect a single photon in C2 (since, this is the

only possibility) and this possibility occurs with a probability 1 − α2
2(t34)α2

1(t11)

[Pramanik et al., 2012].

Figure 2.4: Setup for Experiment 3. Bob checks directly for a photon in cavity C2.
Alice passes the atom a3, initially in the exited state, through the C4 and C2, before

detecting it at D2 again in its exited state.

Experiment-4 : In this case, both Alice and Bob decide to measure the cavity

photon state of their respective cavities after applying the local operations (shown
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in Figure 2.5). Alice sends her auxiliary atom a3 through C4 and C1, and Bob

sends his auxiliary atom a2 through C3 and C2, consecutively. Before detecting

the auxiliary atom, Alice and Bobs both apply π
2
R1 pulse on it. They both

consider the case when auxiliary atoms are detected in |e〉a3 and |e〉a2 . Over all

possible measurement outcomes for both Alice and Bob, there is a non-vanishing

probability of getting a single photon in cavity C1 and nothing in C4, while Bob

detects a single photon in cavity C2 and nothing in C3 which is reflected from the

following term

|ψ〉AB = [−α1(t11)α1(t12)α1(t23)α1(t34)α2(t31)α2(t22)

+α1(t11)α1(t12)α1(t23)α1(t34)α2(t31)

+α2(t11)α1(t23)α1(t34)α2(t22)]|1〉C1|1〉C2|0〉C3|0〉C4

+... (2.18)

in their joint state |ψ〉AB. Such an outcome occurs with a probability 0.0847α2
1(t23)α2

1(t34).

Note here that one can choose values for the parameters k(a2;C3) and k(a3;C4)

such that the probability is non vanishing. The maximum probability 0.0847 oc-

curs for k(a2;C3) = k(a3;C4) = 0.8 (i.e, α1(t23) = α1(t34) = 1) [Pramanik et al.,

2012].

Figure 2.5: Setup for Experiment 4. Alice does the same as she did in Experiment
3, while Bob does the same as in Experiment 2.
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2.3.4 Conclusion from the experimental outcomes

Here, we discuss the results of four different experiments. Experiment-4 shows

contradiction when combined with other three experiments. According to the

logic of Experiment-3, if Alice finds a photon in cavity C1, she concludes that Bob

must detect a photon if he directly checks the photon state of his cavity C2 without

using auxiliary resource of C3 and a2. Similarly, using the logic of Experiment-2,

when Bob finds a photon in the cavity C2, he infers that Alice’s would get a photon

in the cavity C1 when she measures the cavity photon state of C1 without using

any auxiliary resource such as C4 and a3. However, Experiment-1 prohibits both

them to detect a photon each by directly checking for it in their respective cavities

C1 and C2 without using their auxiliary resources. The contradiction arises from

the fact that the above inferences of Alice and Bob are based on the criterion of

locality [Hardy, 1994]. According to the locality criterion, the probability of Bob

obtaining an outcome is independent on whether Alice performs local operation or

not, and vice versa. Without assuming locality, there is no contradiction. Hence,

we conclude the presence of single particle (photon) non-locality.

2.3.5 Summary and outlook

We compare our scheme to show the the presence of non-locality at single particle

level with the earlier works performed by Hardy [Hardy, 1994] and Dunningham

and vedral [Dunningham and Vedral, 2007]. Apart from the analogous nature

of the argument leading to the above mentioned contradiction with the local-

ity assumption, the algebra of the relevant states bears formal resemblance to

those used in the earlier works [Dunningham and Vedral, 2007; Grangier, Roger,

and Aspect, 1986; Hardy, 1994]. In the present scheme, we have used a two

level atom passing through two initially empty cavities to generate the entan-

gled state (shared between Alice and Bob) at the single particle level, instead of

using beam splitters and incident vacuum modes. Also, there are some differ-

ences in the detection mechanism used in Experiments-2,3 and 4. Here we have

used auxiliary cavities and additional two level atoms, instead of the homodyne

detection scheme. In our scheme, the two-photon terms vanish by choosing the

interaction parameters, whereas, in the scheme [Dunningham and Vedral, 2007],

the two-photon terms are avoided by state truncation method. Note that the
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choice of the velocities of the atoms that we have proposed in the various ex-

periments (va1 = 179 m/s, and va2 = Va3 = 161 m/s) fall within the thermally

accessible range of velocities [Angelakis and Knight, 2002; Vats and Rudolph,

2001]. The values for the other interaction parameter (k ≡ d̂eg.ê(r)) that we

have chosen (k(a1;C1) = 0.979, k(a1;C2) = k(a2;C2) = k(a3;C1) = 1, and

k(a2;C3) < 1, k(a3;C4) < 1 ), should also be attainable [Pramanik et al., 2012].

Further, resonant interactions between atoms and cavities enables us to avoid using

coherent [Hardy, 1994] or mixed states [Dunningham and Vedral, 2007] that may

be difficult to create experimentally. Hence, our proposal [Pramanik et al., 2012]

is based on generating atom-cavity entanglement that has already been practically

operational for many years now [Raimond, Brune, and Haroche, 2001]. Thus, our

scheme should facilitate testing the non-locality of single photons in an actual

experiment free of conceptual loopholes. In the next chapter we will focus on a

slightly different manifestation of single particle non-locality, viz., intra-particle

entanglement and its application to information processing.



Chapter 3

Intra-particle entanglement and

its application

3.1 Intra-particle entanglement

Intra-particle entanglement is the entanglement between different degrees of free-

dom of the same particle. Recent experiments have explored the possibility of

generating entanglement between polarization and linear momentum [Boschi et

al., 1998; Michler, Weinfurter, and Zukowski, 2000], and polarization and angu-

lar momentum [Barreiro, Wei, and Kwiat, 2008] of a single particle. In order to

demonstrate contextuality of quantum mechanics, the path-spin entanglement of a

single spin-1/2 particle was proposed [Basu et al., 2001]. Experiments [Hasegawa

et al., 2003] confirmed the existence of such path-spin intra-particle entanglement

for single neutron. It is possible to swap intra-particle entanglement onto the

standard inter-particle entanglement of two qubits [Adhikari et al., 2010]. In [Pra-

manik et al., 2010], we have shown the procedure of generating the entanglement

between the path and spin degrees of freedom of a spin-1/2 particle, with the help

of a beam splitter and spin flipper. Using this path-spin entanglement as a re-

source, we have formulated a protocol for transferring of the state of an unknown

qubit to a distant location.

38
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3.2 Creation of path-spin entanglement of a spin-

1/2 particle

Let Alice prepares a spin-1/2 particle (say, 1st particle) which is polarized along

‘+ẑ’-axis, i.e., the particle initially is in the state |0〉s

(
=

(
1

0

))
. By considering

the path (or position) variable, the joint path-spin state of the 1st particle is given

by

|S〉1ps = |ψ0〉1p ⊗ |0〉1s (3.1)

where the subscripts ‘p’ and ‘s’ label the path and spin variables, respectively, and

the subscript ‘1’ labels the 1st particle. Then, the particle is passed through a

beam-splitter (BS1). Since, the beam splitter affects only the path state without

disturbing the spin state of the particles, the input and output relation is described

by the unitary rotation(
|ψ0〉p
|ψ⊥0 〉p

)
=

(
α iβ

−β iα

)(
|1〉p
|0〉p,

)
(3.2)

where α and β are real and satisfy the relation α2 + β2 = 1. α2 and β2 give the

transmission and reflection probabilities, respectively. The reflected and transmit-

ted paths are labeled by |0〉p

(
≡

(
1

0

))
and |1〉p

(
≡

(
0

1

))
, respectively, and

they are orthogonal to each other. For the purpose of finding the particle in the

reflected path, the projector P (|0〉p) (= |0〉p〈0| which gives the value ‘+1’ when

particle is found in the reflected path) is measured and for the transmitted path,

the projector P (|1〉p) (= |1〉p〈1| which gives the value ‘−1’ when the particle is

found in the transmitted path) is measured.

The state of the 1st particle emergent from BS1 is given by

|S1〉1ps = (α|1〉1p + iβ|0〉1p)⊗ |0〉1s. (3.3)

Next, we place a spin flipper (SF) in the reflected path which flips the spin states,

i.e., |0〉1s → |1〉1s or vice-versa. In the experimental situation, the spin flipper is

realized by a uniform magnetic field directed along +x̂-axis. Due to the effect of
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SF, The state of the 1st particle becomes

|S2〉1ps = α|0〉s|1〉p + iβ|1〉s|0〉p. (3.4)

The state |S2〉1ps is entangled between path and spin degrees of freedom of the

1st particle, i.e., the intra-particle entanglement is created. The state preparation

is shown in the Figure 3.1. After preparing the path-spin state, Alice uses it

to perform different information processing tasks, such as, sending an unknown

quantum state to Bob separated at a distant location.

Figure 3.1: A spin-1/2 particle (labelled as particle 1) with an initial spin polarized
state |0〉1s falls on the beam-splitter BS1. A spin-flipper is placed along the reflected
channel (labelled by |0〉1p). A CNOT operation is performed by Alice involving this
particle and another particle (labelled as “a”. A second CNOT operation is performed
involving particle 1 and her second particle (2) which is in an unknown state |ψin〉.
Alice sends the particle (1) to Bob who lets this particle fall on the beam-splitter
BS2. A CNOT operation is performed by Bob involving this particle and another
particle (3) possessed by him (labelled as |0〉3s). Bob measures the spin of the particle
(1) using the Stern-Gerlach devices SG2 and SG3. Alice then measures the spins of
the particle (2) and particle (a) using the SternGerlach devices SG1 and SGA along
the z-axis. According to the results of the spin measurements through SG1 and SGA
(communicated classically by Alice to Bob), and through SG2 or SG3 (as performed by
Bob), he applies a suitable unitary operation (U) on his particle (3) in order to recreate

the original state |φin〉 possessed by Alice.
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3.3 Path-spin entanglement as a resource

For the purpose of sending an unknown quantum state of a particle labeled by ‘2’

given by

|ψ〉2 = a|0〉2 + b|1〉2, (3.5)

where |a|2 + |b|2 = 1, at a distant location, we have given an information trans-

ferring protocol. According to this protocol, Alice prepares a path-spin hybrid

entangled state, and a particle (i.e., 2nd particle) in an unknown quantum state is

given to Alice whose task is to send that unknown state to Bob located at a distant

place. To protect the information about the unknown quantum state (which will

be discuss later), Alice prepares an auxiliary particle (labeled by ‘a’) in the state

|0〉as . In the beginning of our protocol, Alice makes a CNOT operation where the

1st particle’s spin state acts as a control qubit and auxiliary particle’s spin state

acts as a target qubit. After the CNOT operation the combined state of the 1st

and the auxiliary particle is given by

|S3〉1apss = (α|1〉1p|0〉1s|0〉as + iβ|0〉1p|1〉1s|1〉as). (3.6)

In the next step, Alice makes another CNOT operation where the 1st particle’s

spin state acts as a control qubit and the second particle’s spin state (given by

Eq.(3.5)) acts as a target qubit. The resultant combined state of the three particles

is given by

|ψ〉12a = αa|1〉1p|0〉1s|0〉2s|0〉as + iβa|0〉1p|1〉1s|1〉2s|1〉as
+αb|1〉1p|0〉1s|1〉2s|0〉as + iβb|0〉1p|1〉1s|0〉2s|1〉as (3.7)

Note here that the CNOT operations performed by Alice do not depend on the

paths (i.e., reflected and transmitted paths) of the 1st particle after emerging form

the beam splitter. The CNOT operations have to be done after making path-spin

entanglement without which the protocol has no advantage as in this step, Alice

encodes the information about the unknown state with the path-spin entangled

particle and the auxiliary particle.

After completing the encoding, Alice sends the path-spin entangled particle, i.e.,

the first particle to Bob over the classical channel. When Bob confirms that he
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has received the particle, Alice makes a spin measurement along the ‘z’-axis on

her 2nd particle and another spin measurement along the ‘x’-axis on her auxiliary

particle (labeled by ‘a’) with the help of Stern-Gerlach devices (SG1 in Fig.3.1).

The observables corresponding to the spin measurements along z- and x- axis are

given by σz and σx, respectively. Eq.(3.7) can be rewritten as

|ψ〉12a =
1√
2

[(aα|1〉1p|0〉1s + ibβ|0〉1p|1〉1s)|0〉2s|0x〉as

+(aα|1〉1p|0〉1s − ibβ|0〉1p|1〉1s)|0〉2s|1x〉as
+(iaβ|0〉1p|1〉1s + bα|1〉1p|0〉1s)|1〉2s|0x〉as
+(−iaβ|0〉1p|1〉1s + bα|1〉1p|0〉1s)|1〉2s|1x〉as ], (3.8)

where |0x〉1s ≡
|0〉1s+|1〉1s√

2
(|1s〉1s ≡

|0〉1s−|1〉1s√
2

) is the spin up (spin down) state along

the x−direction. Using the Eq.(3.8), one can construct the Table 3.1 which gives

the states of the 1st particle possessed by Bob corresponding to the possible mea-

surement outcomes for the spin measurements on Alice’s second particle and the

auxiliary particle with respective probabilities.

Table 3.1: States of 1st particle after Alice’s measurement outcome for the
measurement on her 2nd and auxiliary particle with respective probabilities

Spin measurement of 2nd and State of 1st particle Probability of spin
auxiliary particle after spin measurement measurement

|0〉2s|0x〉as aα|1〉1p|0〉1s + ibβ|0〉1p|1〉1s
a2γ2+b2β2

2

|0〉2s|1x〉as aα|1〉1p|0〉1s − ibβ|0〉1p|1〉1s
a2γ2+b2β2

2

|1〉2s|0x〉as aβ|0〉1p|1〉1s − ibα|1〉1p|0〉1s
a2β2+b2α2

2

|1〉2s|1x〉as aβ|0〉1p|1〉1s + ibα|1〉1p|0〉1s
a2β2+b2α2

2

Subsequently, Alice communicates 2-cbits to Bob to inform about her spin mea-

surement outcomes on the 2nd particle and the auxiliary particle. To recreate the

unknown state at his location, Bob takes another particle, say 3rd particle in the

spin up state, i.e, |0〉3s together with the 1st particle which Alice sends to him and

performs following operations depending upon Alice’s measurement outcomes :

Case I. Here we consider the case when Alice gets spin up (|0〉2s) state for the

measurement of σz on her 2nd particle and spin up (|0x〉2s) state for the mea-

surement of σx on her auxiliary particle. This event occurs with the probability
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P (0Z0x) = a2γ2+b2β2

2
.

In this case, after getting the particle, Bob sends it through the 50 − 50 beam

splitter (BS2 in Figure 3.1). The actions of the beam splitter on the states |0〉1p
and |1〉1p are given by

|0〉1p −→
1√
2

[|a〉1p + i|b〉1p]

|1〉1p −→
1√
2

[|b〉1p + i|a〉1p], (3.9)

where |a〉1p and |b〉1p are the new paths of the 1st particle after emerging from the

beam splitter BS2. Now, Bob makes a CNOT operation where the spin states of

the 1st particle act as a control qubit, and spin states of the 3rd particle act as a

target qubit. The combined state of the two particles after the CNOT operation

is given by

|ψ〉13 =
1√

2(a2α2 + b2β2)
[aα|b〉1p|0〉1s|0〉3s − bβ|b〉1p|1〉1s|1〉3s

+iaα|a〉1p|0〉1s|0〉3s + ibβ|a〉1p|1〉1s|1〉3s] (3.10)

Next, Bob measures the spin of the 1st particle using two sets of Stern-Gerlach

apparatus SG3 (placed at path |a〉p) and SG2 (placed at path |b〉p) where the

inhomogeneous magnetic field is directed along the x−axis. Bob gets one of the

four possible outcomes, i.e., |a〉1p ⊗ |0x〉1s, |a〉1p ⊗ |1x〉1s, |b〉1p ⊗ |0x〉1s, |b〉1p ⊗ |1x〉1s
with equal probability 1

4
. Depending upon the exact measurement outcome, Bob

performs a suitable unitary operation, given in the Table 3.2, to recreate the state

as close as possible to the state, given by Eq.(3.5), for his 3rd particle.

Table 3.2: Bob’s unitary rotation when Alice gets |0〉2s|0x〉as

Path and spin unitary final state of Bob’s
measurement rotation 3rd particle, |ψout〉
|a〉1p ⊗ |0x〉1s I aα|0〉3s+bβ|1〉3s√

a2α2+b2β2

|a〉1p ⊗ |1x〉1s σz
aα|0〉3s+bβ|1〉3s√
a2α2+b2β2

|b〉1p ⊗ |0x〉1s σz
aα|0〉3s+bβ|1〉3s√
a2α2+b2β2

|b〉1p ⊗ |1x〉1s I aα|0〉3s+bβ|1〉3s√
a2α2+b2β2
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In this case, the average fidelity (where average is taken over all Bob’s outcomes)

of the state transfer process is given by

F 1
av = |〈ψin|ψout〉|2 =

(a2α + b2β)2

a2α2 + b2β2
. (3.11)

Case II. In this case we consider that Alice’s spin measurement on her 2nd particle

reveals a spin up state (|0〉2s), and the measurement on the auxiliary particle reveals

a spin down state (|1x〉as). This event occurs with probability P (0Z1x) = a2γ2+b2β2

2
.

Bob follows the same procedures as in the Case I, i.e., he sends the 1st particle (sent

by Alice) through the 50−50 beam splitter, subsequently makes a CNOT operation

with it and the 3rd particle, and then measures the spin of the 1st particle using

his Stern-Gerlach apparatus. Finally, depending on his measurement outcomes, he

makes a suitable unitary rotation as shown in the Table 3.3. The average fidelity

of the state transfer is same as F 1
av given by Eq.(3.11).

Table 3.3: Bob’s unitary rotation when Alice gets |0〉2s|1x〉as

Path and spin unitary final state of Bob’s
measurement rotation 3rd particle, |ψout〉
|a〉1p ⊗ |0x〉1s σz

aα|0〉3s+bβ|1〉3s√
a2α2+b2β2

|a〉1p ⊗ |1x〉1s I aα|0〉3s+bβ|1〉3s√
a2α2+b2β2

|b〉1p ⊗ |0x〉1s I aα|0〉3s+bβ|1〉3s√
a2α2+b2β2

|b〉1p ⊗ |1x〉1s σz
aα|0〉3s+bβ|1〉3s√
a2α2+b2β2

Case III. Here we consider that Alice’s spin measurement on her 2nd particle

reveals a spin down state (|1〉2s) and, the measurement on the auxiliary particle

reveals a spin up state (|0x〉as). This event occurs with probability P (1Z0x) =
a2β2+b2α2

2
.

Bob again follows a similar procedure as in Cases I and II. The possible unitary

operations that he has to perform are listed in the Table 3.4. In this case, the

average fidelity of state transfer is given by

F 2
av = |〈ψin|ψout〉|2 =

(a2β + b2α)2

a2β2 + b2α2
. (3.12)
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Table 3.4: Bob’s unitary rotation when Alice gets |1〉2s|0x〉as

Path and spin unitary final state of Bob’s
measurement rotation 3rd particle, |ψout〉
|a〉1p ⊗ |0x〉1s σx

aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

|a〉1p ⊗ |1x〉1s iσy
aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

|b〉1p ⊗ |0x〉1s iσy
aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

|b〉1p ⊗ |1x〉1s σx
aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

Case IV. Here we consider that Alice’s spin measurement on her 2nd particle

reveals a spin down state (|1〉2s) and, the measurement on the auxiliary particle

reveals a spin up state (|1x〉as). This event occurs with probability P (1Z1x) =
a2β2+b2α2

2
.

Bob again follows a similar procedure as in Cases I, II and III. The possible unitary

operations that he has to perform are listed in Table 3.5. In this case, the average

fidelity of state transfer is same as F 2
av, given by Eq.(3.12).

Table 3.5: Bob’s unitary rotation when Alice gets |1〉2s|1x〉as

Path and spin unitary final state of Bob’s
measurement rotation 3rd particle, |ψout〉
|a〉1p ⊗ |0x〉1s iσy

aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

|a〉1p ⊗ |1x〉1s σx
aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

|b〉1p ⊗ |0x〉1s σx
aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

|b〉1p ⊗ |1x〉1s iσy
aβ|0〉3s+bα|1〉3s√
a2β2+b2α2

Considering all the four cases together, it follows from Eqs. (3.11) and (3.12),

and the fact that Alice gets four different outcomes with probability shown in the

Table 3.1, that the average fidelity (where the average is taken over all possible
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outcomes at Alice’s side and Bob’s side) of state transfer is given by

Fav = (P (0z0x) + P (0z1x))F
1
av + (P (1z0x) + P (1z1x))F

2
av

= a4 + b4 + 4αβa2b2. (3.13)

If the path-spin entangled state of Alice’s 1st particles is maximally entangled,

i.e., α = β = 1√
2

(which is experimentally realized when Alice uses a 50− 50 beam

splitter), the average fidelity is equal to 1. In this case, Alice perfectly teleports

the unknown state, i.e., at the end of the protocol, Bob’s 3rd particle state is same

as Alice’s initial unknown state of the 2nd particle.

3.4 Summary and outlook

To summarize, in this work we have shown that using the entanglement between

different degrees of freedom of the same particle, one can transfer the state of

unknown qubit at a distant location. To accomplish this protocol, we have used

beam splitters, a spin flipper, CNOT gates, Stern-Gerlach devices for the spin

measurement and unitary transformations. Our protocol may be viewed as a

variant of the standard teleportation scheme for a single qubit. The difference here

is that since the resource of intra-particle entanglement cannot be initially shared

between the two distant parties, the resource particle itself has to be transferred

from Alice to Bob at some stage. Note however, that Alice keeps the particle whose

state is teleported at his location, and Alice’s measurement destroys the initial

unknown state of the 2nd particle, thus avoiding any conflict with the no-cloning

theorem. It may be noted here that the act of physically sending one or more

particles across distances is an unavoidable component of information theoretic

protocols involved with setting-up entanglement over distances. Whereas, in the

standard teleportation scheme, this process has to be initiated at the beginning

in order to set-up a shared entangled state between two parties, in the present

scheme involving path-spin entanglement of a single particle, the particle is sent

from Alice to Bob in the middle of the protocol.

As Alice sends the path-spin entangled particle to Bob over the channel, it is

natural to ask the question – is the information about the unknown state of the

2nd particle lost when the 1st particle is lost in transit? Here we show that even

if the particle is intercepted by say, a different receiver Eve (instead of Bob) it is
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impossible for Eve to extract the information encoded in the 2nd particle. The

Eq.(3.7) can be rewritten as

|ψ〉12a = α|1〉1p|0〉1s(a|0〉2s + b|1〉2s)|0〉as
iβ|0〉1p|1〉1s(a|1〉2s + b|0〉2s)|1〉as . (3.14)

Now, consider the scenario that the path-spin entangled particle is held by Eve

(instead of Bob), and the auxiliary particle ‘a’ and the 2nd particle are held by

Alice. From the Eq.(3.14), it is clear that whatever local operations are performed

by Eve on the 1st particle, Eve is unable to get any information about the state

of 2nd particle given by Eq.(3.5). Eve would be successful in her task only if Alice

were to make the measurement on the 2nd particle before sending the 1st particle.

Further, it is also possible for Alice to restore the unknown quantum state in the

2nd particle. When Bob confirms to Alice that he didn’t get the particle, Alice

makes a spin measurement on her auxiliary particle in the z-direction. Accord-

ing to the measurement outcome, she performs a suitable unitary transformation

on her 2nd particle – either Alice does nothing when she gets |0〉as or applies the

unitary operation σx when she gets |1〉as , to restore the unknown state to be tele-

portated corresponding to the 2nd particle. Note that the auxiliary particle is used

to protect the the information about the unknown state to be teleported when the

path-spin entangled particle is lost in the transit.

In conclusion, it may be considerably easier to create the intra-particle path-spin

entanglement using beam-splitters, and spin flipper, as we have shown, than gen-

erating inter-particle entanglement through the controlled interaction of two par-

ticles. Since one does not have to preserve the entanglement between two distant

parties, our scheme should be less susceptible to decoherence effects, and thus pro-

vides an advantage over the standard scheme using two entangled qubits. The path

(or linear momentum) degrees of freedom for physical particles are always present

in any experimental set-up. Here we have exploited these path variables to first

generate path-spin entanglement at the level of a single particle, and then use it as

physical resource for performing teleportation. This opens up the possibility of ex-

ploiting path-spin intra-particle entanglement for performing further information

theoretic tasks. It may be also noted that though our protocol is demonstrated

here for spin-1/2 particles such as neutrons, it could be easily implemented for

other types of quanta such as photons using suitable optical devices. Finally, our

analysis generally reemphasizes the notion that entanglement is a fundamental



Chapter 3. Intra-particle entanglement and its application 48

concept independent of either any particular physical realization of Hilbert space

[Ma et al., 2009; Zukowski and Zeilinger, 1991], or delocalisability of the involved

modes, and specifically highlights that hybrid entanglement at the level of a sin-

gle particle [Basu et al., 2001; Hasegawa et al., 2003] could be regarded as a real

physical resource.



Chapter 4

The fine-grained uncertainty

relation and non-local games

A lot of research has been done to improve the uncertainty relation first proposed

by Heisenberg [Heisenberg, 1927]. The uncertainty captured by the standard de-

viation has been upgraded by the entropic uncertainty relation (EUR) [Deutsch,

1983; Kraus, 1987; Maassen and Uffink, 1988]. The state dependency of the lower

bound in the Heisenberg uncertainty relation is also improved in the entropic form.

But, the EUR [Maassen and Uffink, 1988] is unable to capture the non-local fea-

ture of quantum physics which is revealed by the violation of Bell’s inequality. In a

recent work, Oppenheim and Wehner [Oppenheim and Wehner, 2010] have intro-

duced a new kind of uncertainty relation, called fine-grained uncertainty relation

(FUR) which is capable of distinguishing the plurality of simultaneous possible

outcomes of a set of measurements.

4.1 Fine-grained uncertainty relation

In the fine-grained uncertainty relation, the uncertainty of a particular measure-

ment outcome (say, the k-th outcome) for the measurement of an observable A
is determined by the corresponding probability pk. To describe the fine-grained

uncertainty relation, we consider an observable t chosen from the set of n observ-

ables T with probability p(t) (∈ D, the probability distribution {p(t)} of choosing

different measurements). Here, the uncertainty of a particular measurement out-

come x(t) for the measurement of an observable t is measured by the probability of

49
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obtaining that outcome, i.e., p(x(t)|t), and the average uncertainty where the av-

erage is taken over all possible measurements on the state of the observed physical

system σ is bounded by [Oppenheim and Wehner, 2010]

P (σ,x) :=
n−1∑
t=0

p(t)p(x(t)|t)σ ≤ ζx(T ,D), (4.1)

where P (σ,x) is the total probability of possible outcomes {x(1), ..., x(n)} ∈ x.

ζx(T ,D) which gives the maximum probability, is given by

ζx(T ,D) = max
χ

n−1∑
t=0

p(t)p(x(t)|t)σ, (4.2)

where the maximization is taken over all possible strategies, χ which consists the

choice of state σ and the choice of measurements.

The connection of FUR with uncertainty is as follows – when the probability

p(x(t)|t)σ is less than unity for any measurement t, there is uncertainty associated

with the measurement t, and hence, ζ < 1. We discuss below the applications

of FUR to single qubit, bipartite, and tripartite systems. The fine-grained form

of the uncertainty relation is able to capture the non-local feature of bipartite

[Oppenheim and Wehner, 2010] and tripartite systems [Pramanik and Majumdar,

2012].

4.2 Single qubit system

To describe the fine-grained uncertainty for the single qubit system, we consider the

following game. Let us consider that a player, say Alice, initially possesses a qubit

in the state ρA. She receives a binary question ‘s’ ∈ {0, 1} with the probability

p(s). For simplicity, here we consider p(s) = 1
2
, i.e., Alice receives questions s = 0

and s = 1 with equal probability. According to the given question, Alice measures

either the observable A0 = σz (i.e., she measures spin along z-direction) when she

receives s = 0 or the observable A1 = σx (i.e., she measures spin along x-direction)

when she receive s = 1, on her qubit.
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Winning condition : Alice wins the game, if she gets a specific outcome ‘a’

(which can take either a = 0 for spin up outcome and a = 1 for spin down

outcome) for the measurement of both σx and σz on her qubit.

Winning probability : The maximum winning probability for the winning

conditions a = 0 and a = 1 are the same and given by

ζ = max
ρA

1

2

1∑
s=0

Tr[AasρA] =
1

2
+

1

2
√

2
, (4.3)

where Aas is the projector for the measurement outcome ‘a’ of the observable ‘s’,

i.e.

Aas = |as〉〈as|, (4.4)

where |as〉 form basis of the observable A.

Maximally certain state : The state which gives the maximum winning

probability, i.e., 1
2

+ 1
2
√

2
is called the maximally certain state for that winning

condition. For the winning condition a = 0 and the set of measurements {σz, σx},
the maximally certain states are ρMA = 1

2
(I± σx+σz

2
), and for the winning condition

a = 1 and for the same choice of observables, the maximally certain states are

ρMA = 1
2
(I ± σx−σz

2
).

4.3 Bipartite system

To describe the FUR in the bipartite system, Oppenheim and Wehner [Oppenheim

and Wehner, 2010] have considered specific examples of non-local retrieval games

(for which there exists only one winning answer for one of the two parties). To

capture the non-locality in the bipartite system they gave an example of a non-

local retrieval game known as the CHSH game [Clauser et al., 1969]. According

to the CHSH game, Alice and Bob are given the questions ‘s’ (chosen from the

set ∈ S) and ‘t’ (chosen from the set ∈ T ), respectively, with some probability

p(s, t) (which is considered as p(s)p(t), for simplicity); and Alice’s answer ‘a’ or

Bob’s answer ‘b’ will be the winning answer if ‘a’ given ‘b’ satisfies certain rules,

i.e., for every settings ‘s’ and the corresponding outcome ‘a’ of Alice, there is a
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string xs,a = (x
(1)
s,a, ..., xts,a, ..., x

(n)
s,a ) of length n = |T | that determines the correct

answer b = xts,a for the question ‘t’ for Bob.

4.3.1 CHSH game

In the prescribed non-local CHSH game, Alice and Bob receive binary questions

s, t ∈ {0, 1} (representing two different measurement settings on each side), re-

spectively and they win the game if their binary outcomes a, b ∈ {0, 1} satisfy the

condition a⊕ b = s t. Before playing the game, Alice and Bob discuss about the

choice of strategies – i. the choice of shared state, ii. the choice of measurement

settings, and once the game starts, they do not communicate with each other. The

winning probability of the game for a physical theory described by the bipartite

state (σAB) is bounded by

P game(S, T , σAB) =
∑
s,t

p(s, t)
∑
a

p(a, b = xts,a|s, t)σAB

≤ P game
max = max

S,T ,σAB
P game, (4.5)

where p(a, b = xts,a|s, t)σAB is the winning probability when Alice gets outcome ‘a’

for her choice of observable ‘s’ and Bob’s choice ‘t’, and it is given by

p(a, b = xts,a|s, t)σAB =
∑
b

V (a, b|s, t)〈(Aas ⊗ Bbt )〉σAB , (4.6)

where Aas (= I+(−1)aAs
2

) is a measurement of the observable As performed by Alice

corresponding to setting ‘s’ giving outcome ‘a’; Bbt (= I+(−1)bBt
2

) is a measurement

of the observable Bs performed by Bob corresponding to setting ‘t’ giving outcome

‘b’. V (a, b|s, t) is the winning condition given by

V (a, b|s, t) = 1 iff a⊕ b = s t

= 0 otherwise. (4.7)

P game
max is the maximum winning probability, where maximization is taken over all

possible strategies, i.e., σAB, S and T . Using Eqs.(4.5), (4.6) and (4.7) and by con-

sidering p(s, t) = p(s)p(t) = 1
4
, one can calculate the expression of P game(S, T , σAB)
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for the bipartite state, σAB given by

P game(S, T , σAB) =
1

2

(
1 +
〈BCHSH〉σAB

4

)
, (4.8)

where BCHSH = A0⊗B0 +A0⊗B1 +A1⊗B0−A1⊗B1, known as the Bell-CHSH

operator [Bell, 1964; Clauser et al., 1969].

4.3.2 Non-locality captured by the CHSH game

The importance of FUR in the bipartite system is that FUR gives the differ-

ent maximum winning probabilities under different physical theories, depending

upon the strength of non-locality (captured by the Bell-CHSH inequality) of the

corresponding physical theory in the bipartite system for the CHSH game. The

maximum winning probability P game
max of the CHSH game in classical physics is 3

4

(as classically, the Bell-CHSH inequality is bounded by 2), in quantum physics is

(1
2

+ 1
2
√

2
) (due to the maximum violation of Bell inequality, BCHSH = 2

√
2), and

by no-signaling theory with maximum Bell violation (BCHSH = 4, that occurs for

the Popescu-Rohrlich box [Popescu and Rohrlich, 1994]) is 1.

4.4 Tripartite system

In [Pramanik and Majumdar, 2012], we have generalized the fine-grained uncer-

tainty relation for the case of tripartite systems. To discriminate between different

no-signaling theories on the basis of their degree of non-locality, we consider three

different non-local retrieval games similar to the CHSH game for bipartite systems.

Here, Alice, Bob and Charlie receive binary questions ‘s’, ‘t’, and ‘u’ ∈ {0, 1}. Ac-

cording to the given question, each player measures an observable chosen from

the set of two observables. If their answer ‘a’, ‘b’, and ‘c’ ∈ {0, 1} (which corre-

sponds to their respective measurement outcomes) satisfy certain rules, they win

the game.

Winning condition : We restrict our analysis to the three kinds of no-signaling

boxes, known as full correlation boxes, for which one or two-party correlations

in the system vanishes [Barrett et al., 2005; Pironio, Bancal, and Scarani, 2011].

The players Alice, Bob, and Charlie win the game, if Alice’s answer ‘a’, Bob’s
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answer ‘b’, and Charlie’s answer ‘c’ (where the binary answers correspond to the

measurement outcome of their respective system) satisfy the set of rules given by

either a⊕ b⊕ c = s t+ t u+ u s (4.9)

or a⊕ b⊕ c = s t+ s u (4.10)

or else a⊕ b⊕ c = s t u (4.11)

The Mermin inequality is violated by all three boxes [Mermin, 1990], whereas the

box (known as the Svetlichny box) given by Eq.(4.9) only violates the Svetlichny

inequality [Svetlichny, 1987].

Winning probability : Under the physical theory described by a shared tri-

partite state σABC , Alice, Bob, and Charlie win the game (ruled by the winning

condition given by either of Eqs. (4.9), (4.10) and (4.11)) with a probability

bounded by

P game(S, T ,U , σABC) =
∑
s,t,u

p(s, t, u)
∑
a,b

p(a, b, c = x
(u)
s,t,a,b|s, t, u)σABC

≤ P game
max , (4.12)

where p(s, t, u) is the probability that Alice receives question ‘s’, Bob ‘t’, and

Charlie ‘u’, and p(a, b, c = x
(u)
s,t,a,b|s, t, u)σABC is the winning probability when Alice

gets the measurement outcome ‘a’ for the measurement setting ‘s’, Bob gets the

measurement outcome ‘b’ for the measurement setting ‘t’, and Charlie gets the

measurement outcome ‘c’ for the measurement setting ‘u’, given by

p(a, b, c = x
(u)
s,t,a,b|s, t, u)σABC =

∑
c

V (a, b, c|s, t, u)〈Aas ⊗ Bbt ⊗ Ccu〉σABC , (4.13)

where Aas , Bbt , and Ccu are the measurement corresponding to setting ‘s’ and out-

come ‘a’ at Alice’s side, setting ‘t’ and outcome ‘b’ at Bob’s side, setting ‘u’

and outcome ‘c’ at Charlie’s side, respectively. V (a, b, c|s, t, u) inserts the win-

ning condition given by either of Eqs.(4.10), (4.10) and (4.11) in the probability

p(a, b, c = x
(u)
s,t,a,b|s, t, u)σABC and makes it winning probability. The maximum

winning probability is given by

P game
max = max

S,T ,U ,σABC
P game(S, T ,U , σABC), (4.14)



Chapter 4. The fine-grained uncertainty relation and non-local games 55

where the maximization is taken over all possible measurement settings at respec-

tive sides, and the shared tripartite state. The maximum winning probability

gives the signature of the allowed probability distribution under that theory. In

[Pramanik and Majumdar, 2012] we have studied the cases of classical, quantum,

and no-signaling theories with superquantum correlations for the above different

full-correlation boxes (rules of the non-local game) separately.

4.4.1 Winning condition characterized by the Svetlichny

box

Let us consider a non-local game where the players Alice, Bob, and Charlie win

the game if their outcomes are correlated with their input by the Eq.(4.9). Also,

for simplicity, we assume that the probability with which the players received the

questions is independent of each other, i.e, p(s, t, u) = p(s)p(t)p(u) = 1
8
. With

consideration of the above conditions, the expression of P game(S, T ,U , σABC) for

the shared state σA,B,C (among Alice, Bob, and Charlie) is given by

P game(S, T ,U , σABC) =
1

2

[
1 +
〈S1〉σABC

8

]
, (4.15)

where

S1 = A0 ⊗ B0 ⊗ C0 +A0 ⊗ B0 ⊗ C1 +A0 ⊗ B1 ⊗ C0

+A1 ⊗ B0 ⊗ C0 −A0 ⊗ B1 ⊗ C1 −A1 ⊗ B0 ⊗ C1

−A1 ⊗ B1 ⊗ C0 −A1 ⊗ B1 ⊗ C1. (4.16)

Now, with the help of the Svetlichny inequality [Svetlichny, 1987] given by

〈S1〉σABC ≤ 4, (4.17)

one can easily find out that the maximum winning probability for any theory

supported by local-hidden variables, i.e., classical physics, is 3
4
.

For quantum physics where the inequality (4.17) is violated, we consider two classes

of pure entangled states for tripartite systems, i.e., the GHZ state, given by

|GHZ〉ABC =
|000〉ABC + |111〉ABC√

2
, (4.18)
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and the W state, given by

|W 〉ABC =
|001〉ABC + |010〉ABC + |100〉ABC√

3
. (4.19)

The maximum violation of the Svetlichny inequality occurs for the GHZ state,

and is given by the amount 4
√

2 [Ajoy and Rungta, 2010; Collins et al., 2002;

Mitchell, Popescu, and Roberts, 2004; Seevinck and Svetlichny, 2002], whereas

the W state violates the Svetlichney inequality by an amount 4.354 [Cereceda,

2002]. Hence, the value of P game
max allowed in quantum physics is 1

2
+ 1

2
√

2
. For the

case of no-signaling theory, the algebraic maximum of the Svetlichny inequality

is 8 [Barrett et al., 2005; Pironio, Bancal, and Scarani, 2011], and the value of

P game
max in this case is 1, corresponding to a correlation with maximum non-locality

[Pramanik and Majumdar, 2012].

4.4.2 Winning condition characterized by a⊕b⊕c = s t+s u

In this case, Alice, Bob and Charlie win the game if their input (i.e., measurement

settings) and output (i.e., measurement outcomes) are correlated by the Eq.(4.10).

The winning probability P game(S, T ,U , σABC) is given by

P game(S, T ,U , σABC) =
1

2

[
1 +
〈S2〉σABC

8

]
, (4.20)

where

S2 = A0 ⊗ B0 ⊗ C0 +A0 ⊗ B0 ⊗ C1 +A0 ⊗ B1 ⊗ C0

+A1 ⊗ B0 ⊗ C0 +A0 ⊗ B1 ⊗ C1 −A1 ⊗ B0 ⊗ C1

−A1 ⊗ B1 ⊗ C0 +A1 ⊗ B1 ⊗ C1. (4.21)

It can be seen that the maximum value of 〈S2〉σABC is 4, when all the variables

Ai, Bi, Ci take value either ‘+1’ or ‘−1’. Hence, the value of P game
max for classical

physics is 3
4
. To find out the maximum value of 〈S2〉σABC in quantum physics,

we maximize 〈S2〉σABC = Tr[S2 σABC ] over spin-up and spin-down measurements

along all possible unit Bloch vectors on both the GHZ and the W state. The

projector for the spin measurements along the unit Bloch vector ~nXα is given by

Π±Xα =
1

2
(I ± ~nXα .~σ), (4.22)
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where ~nXα (≡ {sin(θXα) cos(φXα), sin(θXα) sin(φXα), cos(θXα)}); ~σ ≡ {σx, σy, σz}
are the Pauli matrices with with X = A (for Alice), B (for Bob), and C (for Char-

lie); α = 0, 1 represents the spin measurement along two different directions. Using

MATHEMATICA, it is found numerically that the maximum value of 〈S2〉σABC
for both the GHZ state and W state is 4, i.e.,

max[〈S2〉GHZ (W )] = 4. (4.23)

For example, max[〈S2〉GHZ (W )] = 4 occurs for the choice θA1 = θB0 = π
2
, θB1 =

θC0 = θC1 = 3π
2

, θA0 = φA0 = φA1 = φB0 = φB1 = φC1 = 0 and φC0 = π [Pramanik

and Majumdar, 2012]. The value of maximum winning probability, P game
max for

the non-local game characterized by the winning condition given by Eq.(4.10) is
3
4

for both the shared GHZ and W states. Hence, the degree of non-locality

captured by this particular full correlation Mermin box [Mermin, 1990] is unable

to distinguish classical theory from quantum theory. Nonetheless, similar to the

case of the Svetlichny box [Svetlichny, 1987] given by Eq.(4.9), the value of P game
max

in no-signaling theory with maximum non-locality is 1, here too.

4.4.3 Winning condition characterized by a⊕ b⊕ c = s t u

When the winning condition is chosen by the condition given by Eq.(4.11), the

winning probability P game(S, T ,U , σABC) is given by

P game(S, T ,U , σABC) =
1

2

[
1 +
〈S3〉σABC

8

]
, (4.24)

where

S3 = A0 ⊗ B0 ⊗ C0 +A0 ⊗ B0 ⊗ C1 +A0 ⊗ B1 ⊗ C0

+A1 ⊗ B0 ⊗ C0 +A0 ⊗ B1 ⊗ C1 +A1 ⊗ B0 ⊗ C1

+A1 ⊗ B1 ⊗ C0 −A1 ⊗ B1 ⊗ C1. (4.25)

In this case, the maximum value of 〈S3〉σABC is 6 for classical theory and the

value of maximum winning probability, P game
max is 7

8
. In quantum mechanics, the

maximum value of 〈S3〉σABC is obtained by maximizing spin measurements along

unit Bloch vectors numerically, as discussed above. For both GHZ state and W
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state, the maximum value of 〈S3〉σABC is given by

max[〈S3〉GHZ (W )] = 6, (4.26)

which occurs for θA0 = θA1 = θB1 = θC0 = θC1 = 3π
2

, θB0 = π
2
, φA0 = φA1 =

φB0 = φC0 = φC1 = 0, and φB1 = π. Hence, the value of P game
max in the quantum

mechanics is 7
8

[Pramanik and Majumdar, 2012]. Thus, the full-correlation Mermin

box (where the input and output is correlated by Eq.(4.11)) also fails to distinguish

between classical and quantum physics using the fine-grained uncertainty relation.

However, in the no-signaling theory with maximum non-locality, the maximum

value of 〈S3〉σABC is 8, and the corresponding maximum winning probability P game
max

is 1 [Pramanik and Majumdar, 2012].

4.5 Summary and outlook

In this chapter, we have generalized the connection of fine grained uncertainty

relation, as expressed in terms of the maximum winning probability of prescribed

retrieval non-local games, and the degree of non-locality of the underlying phys-

ical theory [Oppenheim and Wehner, 2010] to the case of tripartite systems. We

have shown that FUR determines the degree of non-locality as manifested by the

Svetlichny inequality for tripartite systems corresponding to the winning condition

given by Eq.(4.9), in the same way as FUR determines non-locality of bipartite

system manifested by Bell- CHSH inequality. Thus, with the help of FUR one is

able to differentiate the various classes of theories (i.e., classical physics, quantum

physics, and non-signaling theories with maximum non-locality or superquantum

correlations) by the value of P game
max for tripartite systems. Furthermore, within

quantum theory, it is clear from the upper bound of P game
max that the GHZ state is

more non-local than the W state [Ajoy and Rungta, 2010; Cereceda, 2002; Collins

et al., 2002; Mitchell, Popescu, and Roberts, 2004; Seevinck and Svetlichny, 2002].

Finally, it may be noted that by considering the winning conditions of the tri-

partite games given by the other two full correlation boxes [i.e., Eqs. (4.10) and

(4.11)], which violate the Mermin inequality but not the Svetlichny inequality,

the fine-grained uncertainty relation is unable to discriminate quantum physics

from classical physics in terms of the degree of non-locality. In the next chapter,

we show that with the help of FUR, one can optimally reduce the uncertainty of
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measurement outcomes for the measurement of two non-commuting observables

in the presence of quantum memory.



Chapter 5

Uncertainty relation in the

presence of quantum memory

Uncertainty relations in the form of both standard deviation (given by Eqs.(1.34)

and (1.35)) and entropy (given by Eq.(1.36) bound the precision of measurement

outcomes for the measurement of two non-commuting observables. In the deriva-

tion of above uncertainty relations (given by Eqs. (1.34), (1.35), and (1.36)), the

correlation of the observed system (labeled by ‘A’) with the other system known

as quantum memory (labeled by ‘B’) is not considered. To answer the question –

is it possible to reduce the uncertainty further from the given bound by Eq.(1.36)

with the help of the correlation with the other systems, Berta et al. derived a

new form of the uncertainty relation in the presence of quantum memory [Berta

et al., 2010] where they have shown the possibility of lowering the uncertainty

for the measurement of two non-commuting observables. For a shared maximum

entanglement between the observed system and quantum memory, the above un-

certainty can be made to be zero, i.e., there is no uncertainty for the measurement

of two non-commuting observables by accessing the quantum memory.

To derive the uncertainty relation in the presence of quantum memory, a memory

game is considered [Berta et al., 2010]. According to the proposed game, Bob

prepares a quantum system (labeled by ‘A’) in a state ρA and sends it to Alice

who measures an observable chosen from the set {R, S} (which was known to

Bob) on it and communicates the choice of the observable to Bob. Bob’s task is to

minimize his uncertainty about Alice’s measurement outcome. To win the above

game, Bob applies a quantum strategy as described below.

60



Chapter 5. Uncertainty relation in the presence of quantum memory 61

5.1 Quantum strategy

To improve the situation, Bob correlates his system ‘B’ with the system ‘A’ which

he sends to Alice. With the help of the above correlation, Bob tries to infer Alice’s

measurement outcome. Theoretically, it has been shown [Berta et al., 2010] that

Bob can enhance his knowledge about Alice’s outcomes by preparing ρAB in an

entangled state. The uncertainty relation in the presence of quantum memory is

given by [Berta et al., 2010]

S(R|B) + S(S|B) ≥ log2

1

c
+ S(A|B), (5.1)

where S(R|B) [S(S|B)] is the conditional von-Neumann entropy of the state given

by

ρR(S)B =
∑
j

(|ψj〉〈ψj| ⊗ I)ρAB(|ψj〉〈ψj| ⊗ I), (5.2)

where |ψj〉 are the eigenstates of the observable R (S). S(R|B) [S(S|B)] quantifies

the uncertainty corresponding to the measurement R (S) on the system ‘A’ given

information stored in the system ‘B’ (i.e., quantum memory) and S(A|B) quanti-

fies the amount of entanglement between the quantum system possessed by Alice

and the quantum memory possessed by Bob. For the measurement of two non-

commuting observables R and S for which the lower bound of Bob’s uncertainty

(given by Eq.(5.1)) is maximum with respect to the measurement settings, i.e.,

log2
1
c

= 1, and for a shared maximally entangled state, i.e., S(A|B) = −1, Bob’s

uncertainty (given by Eq.(5.1)) becomes zero, i.e., Bob knows Alice’s measurement

outcome for her declared observable with certainty.

5.2 Experimental investigation of the uncertainty

relation in the presence of quantum memory

Two recent experiments, using respectively, a pure entangled state [Prevedel et

al., 2011] and a mixed entangled state [Li et al., 2011] show the effectiveness of

quantum memory in reducing quantum uncertainty. In the experimental situation,

Alice and Bob measure the same observables on their respective system, i.e., when

Alice communicates, Bob measures the same observable as Alice. Alice and Bob
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calculate the quantity H(pRd ) +H(pSd ), where pRd (pSd ) is the probability of getting

different outcomes when both Alice and Bob measure the same observable R (S).

Using Fano’s inequality [Fano, 1961] given by

H(pRd ) +H(pSd ) ≥ S(R|B) + S(S|B), (5.3)

one can rewrite the inequality (5.1) in the form given by

H(pRd ) +H(pSd ) ≥ log2

1

c
+ S(A|B). (5.4)

The right hand side is a function of the measurement settings and the bipartite

state ρAB. It was experimentally observed by Li et al. [Li et al., 2011] that the

left hand side exceeds the right hand side for the case of a Bell-diagonal state.

5.3 Optimal lower bound of uncertainty

In [Pramanik, Chowdhury, and Majumdar, 2013], we have given the optimal lower

bound for the sum of Bob’s uncertainty given by the L.H.S. of the inequality (5.4).

We have shown that the bound log2
1
c

+S(A|B) given in the inequality (5.4) is not

optimal for the quantity H(pRd ) +H(pSd ). We have found the optimal lower bound

(in the experimental situation [Li et al., 2011]) from the maximum (or minimum)

winning probability (which minimize Bob’s uncertainty) of the quantum memory

game. Bob prepares two system ‘A’ and ‘B’ in a two-qubit state ρAB and sends

the system ‘A’ to Alice who measures an observable chosen from the set of two

non-commuting observables {R, S} and communicates the chosen observable to

Bob. Bob measures the same observable on his possessed system ‘B’. Alice and

Bob win the game if there binary outcomes ‘a’ ∈ {0, 1} (for Alice) and ‘b’ ∈ {0, 1}
(for Bob) satisfy a⊕ b = 1 (they get opposite outcomes), i.e., when Alice gets spin

up, Bob will get spin down or vice versa [Li et al., 2011]. We find the winning

probability using the fine-grained uncertainty relation [Oppenheim and Wehner,

2010; Pramanik and Majumdar, 2012].

In the above game, Bob’s uncertainty about Alice’s measurement outcome (i.e.,

the winning probability of getting different outcomes for the measurements R and

S) is given byH(pRd )+H(pSd ) which is the left-hand side of the entropic uncertainty

relation given by the inequality (5.4). We minimize the quantity H(pRd ) +H(pSd )
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with respect to all incompatible measurement settings such that R 6= S, i.e.,

H(pRd ) +H(pSd ) ≥ min
R,S 6=R

[H(pRd ) +H(pSd )]. (5.5)

Without loss of generality, the choice of one variable, e.g., R, may be fixed, say,

R = σz (i.e., spin measurement along the z-direction) to find the minimum value

in the above inequality. The Eq.(5.5) can be rewritten in the form

H(pRd ) +H(pSd ) ≥ H(pσzd ) + min
S 6=σz

[H(pSd )]. (5.6)

The uncertainty captured by the entropy H(pSd ) is minimum when the certainty

[Oppenheim and Wehner, 2010] measured by pSd of the required outcome (restricted

by a⊕ b = 1) is infimum, i.e., minS 6=σz [H(pSd )] = H(pSinf ).

With the help of the fine-grained uncertainty relation [Oppenheim and Wehner,

2010], we calculate the infimum value of pSd for the prescribed game [Pramanik,

Chowdhury, and Majumdar, 2013]. In the context of this particular game consid-

ered here [s = t in Eq.(4.5)], the fine-grained uncertainty relation is given by

P game =
∑
a,b

V (a, b)Tr[(Aas ⊗Bb
t )ρAB] ≤ pSinf = inf

S( 6=σz)
[P game], (5.7)

where the winning condition of the prescribed game is given by

V (a, b) = 1 iff a⊕ b = 1

= 0 otherwise. (5.8)

Here, AaS is the projector for observable S with outcome ‘a’ given by Sα =
I+(−1)α~nS .~σ

2
(and similarly for Bb

S), where ~nS ≡ {sin(θS) cos(φS), sin(θS) sin(φS),

cos(θS)}; ~σ ≡ {σz, σy, σz} are the Pauli matrices; α takes value either 0 (for spin

up projector) or 1 (for spin down projector). Note that our prescribed winning

condition given by Eq.(5.8) is different from the winning condition used in the

Ref. [Oppenheim and Wehner, 2010] for the purpose of capturing the non-locality

of bipartite system. Here, we have adapted the fine-grained uncertainty relation

making it directly applicable to the experimental situation of quantum memory,

by introducing a new winning condition modeling the experiments [Li et al., 2011].
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After obtaining the quantity pSinf , the inequality (5.6) becomes

H(pRd ) +H(pSd ) ≥ H(pσzd ) +H(pSinf), (5.9)

where the R.H.S. gives the optimal lower bound of entropic uncertainty in the

presence of quantum memory. The value of H(pSinf) is calculated for the given

quantum state ρAB using the expression (5.7). As a result, the lower bound of the

entropic uncertainty in the presence of quantum correlations is now determined

by the minimum entropy corresponding to the infimum winning probability of the

above game, replacing the earlier lower bound given by the right-hand side of in-

equality (5.1) [Berta et al., 2010; Li et al., 2011]. Note that the inequality (5.9)

can be derived for any choice of R other than σz as well. Our proposed uncertainty

relation is independent of measurement settings as it optimizes the reduction of

uncertainty quantified by the conditional Shannon entropy over all possible ob-

servables. Given a bipartite state possessing quantum correlations, inequality

(5.9) provides the fundamental limit to which uncertainty in the measurement

outcomes of any two incompatible variables can be reduced.

Next, we find out the optimal lower bound of entropic uncertainty in the presence

of quantum memory for various two qubit state, e.g., pure entangled state, Werner

state, Bell diagonal state, with the help of Eq.(5.9) where, pSinf is calculated with

the help of Eq.(5.7) (the optimization over all spin projectors is performed using

MATHEMATICA).

Pure Entangled state : Let us consider, Bob prepares the two system A and

B in the two qubit pure entangled state |ψ〉PEAB (labeled by superscript PE ) given

by

|ψ〉PEAB =
√
α|01〉AB −

√
1− α|10〉AB (5.10)

where α lies between 0 and 1, i.e., 0 ≤ α ≤ 1. The state ρPEAB (= |ψ〉PEAB〈ψ|)
becomes maximally entangled when α = 1

2
. Bob sends the system A to Alice. For

the shared state ρPEAB, the lower bound of the inequality (5.9) (i.e., R.H.S of the

inequality (5.9)) is given by

L1(ρPEAB) = H(pσzd ) +H(pSinf) = H(
1

2
+
√
α(1− α)) (5.11)
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where pσzd = 1 and pSinf = 1
2

+
√
α(1− α) which is achieved for the choice S = σx.

The lower bound given by the inequality (5.4) (i.e., R.H.S. of the inequality ( (5.4))

is

L2(ρPEAB) = log2

1

c
+ S(A|B)

= log2[
1

max[cos( θS
2

)2, sin( θS
2

)2
]−H(α), (5.12)

which varies from H(α) to 1 − H(α) depending upon the measurement settings

{θS, φS}. From Eqs.(5.11) and (5.12), one can see that L1(ρPEAB) ≥ L2(ρPEAB), where

the equality sign holds for α = 1
2
, i.e., L1(ρPEAB) = L2(ρPEAB) = 0. Hence, the bound

L2(ρPEAB) is not achievable except for the shared maximally entangled state, i.e.,

α = 1
2
.

For the shared maximally entangled state, Alice’s and Bob’s outputs are strongly

correlated when both Alice and Bob measure the same observable on their re-

spective systems. When Alice communicates about her measurement setting, Bob

knows certainly about Alice’s outcome by measuring the same observable on his

system. The lower bound of entropic uncertainty relation should thus be reduced

to zero, as observed experimentally [Prevedel et al., 2011].

Bell diagonal state : The bell diagonal state used in the Ref. [Li et al., 2011]

is give by

ρBDAB = p |φ+〉AB〈φ+|+ (1− p)|ψ−〉AB〈ψ−| (5.13)

where |φ+〉AB = 1√
2
(|00〉AB + |11〉AB), |ψ−〉AB = 1√

2
(|01〉AB − |10〉AB), and the

mixing parameter, p lies between 0 and 1. The lower bound of entropic uncertainty

in the presence of quantum memory (given by inequality (5.4)) for the state ρBDAB

is given by H(p) (H(1 − p)) which is also the optimal lower bound given by the

inequality (5.9), where pσzd = (1 − p) and p
σy
inf = 1. Note that the choice R =

σz, S = σx (taken by Li et al. [Li et al., 2011]) is unable to minimize the left-hand

side of inequality(5.4).

Werner state : Here we consider that Alice and Bob share the Werner state

given by [Werner, 1989]

ρWAB = α|ψ−〉AB〈ψ−|+
1− α

4
I ⊗ I, (5.14)
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where I is the 2⊗ 2 unit matrix and α is the mixedness parameter lying between

0 and 1. The optimal lower bound (given by inequality (5.9)),

L1(ρWAB) = 2H(
1− p

2
) (5.15)

which is realized for the choice R = σz and S = σx always exceeds the lower bound

L2(ρWAB) = −3
1− p

4
log2

1− p
4
− 1 + 3p

4
log2

1 + 3p

4
, (5.16)

given by inequality (5.4), except for α = 0 (maximally mixed state leading to max-

imum and equal uncertainty using both the approaches), and for p = 1 (maximally

entangled state leading to vanishing uncertainty in both approaches). Hence, the

lower bound L2(ρWAB) is not optimal and it is not possible to be experimentally [Li

et al., 2011] realized.

Two qubit mixed state with maximally mixed marginals : Finally, con-

sider the general class of two qubit mixed state with maximally mixed marginals,

given by

ρMM
AB =

1

4
(I ⊗ I +

3∑
i=1

ciσi ⊗ σi), (5.17)

where the ci are real constants satisfying the constraints

0 ≤ 1− c1 − c2 − c3

4
≤ 1,

0 ≤ 1 + c1 − c2 − c3

4
≤ 1,

0 ≤ 1− c1 + c2 − c3

4
≤ 1,

0 ≤ 1− c1 − c2 + c3

4
≤ 1, (5.18)

such that the state ρMM
AB is physical. In [Pramanik, Chowdhury, and Majumdar,

2013], the lower bound of the inequality (5.9) with respect to the observable S is

calculated and then compared with the lower bound of inequality (5.4). For wide

range of choices of the state parameter ci, we have found that the fundamental

limit set by the inequality (5.9) as obtained through fine grainning exceeds the

lower bound applying the right-hand side of Eq.(5.4). A typical example, using

the values c1 = 0.5, c2 = −0.2, c3 = −0.3, in the Figure 5.1, H(pRd ) + H(pSd )

is compared with log2
1
c

+ S(A|B) [Pramanik, Chowdhury, and Majumdar, 2013].
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From the Figure 5.1, it is clear that optimal lower bound H(pσzd )+H(pSinf) ≈ 1.754

is attained for S = σx, while for the same observable, one obtains the right hand

side of Eq.(5.4) as log2
1
c

+ S(A|B) ≈ 1.558.

It is clear from the Figure 5.1, that when the specific state is used as quantum

memory, the lower bound as predicted by the analysis of Berta et al. [Berta et al.,

2010] is never achieved in an actual experiment using any choice of measurement

settings {θS, φS}.

Figure 5.1: The lower bound of entropic uncertainty corresponding to measurements
on a two-qubit state with maximally mixed marginals in the presence of quantum
memory. (i) the upper plot H(pσz

d ) + H(pSinf ) as predicted by using our uncertainty
relation (5.9) derived here, and (ii) the lower plot log2

1
c + S(A|B) as predicted by the

analysis of Berta et al.[Berta et al., 2010] given by (5.1,5.4). The region between the
two curves is inaccessible in actual measurements according to our results, since the

optimal lower bound of entropic uncertainty is determined by fine-graining.

5.4 Application in quantum key generation

The entropic uncertainty relation in the presence of quantum memory could be

used in quantum key distribution protocols. The amount of key K extracted per

state is bounded by

K ≥ S(R|E)− S(R|B), (5.19)
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where the quantum state ρABE is shared between Alice, Bob and the eavesdrop-

per, Eve (labeled by E) [Ekert, 1991]. Using the relation S(RB) = S(RE) and

S(AB) = S(E) (which hold for the shared pure state ρABC), the inequality (5.1)

becomes

S(R|E) + S(S|B) ≥ log2

1

c
, (5.20)

as conjectured by Boileau and Renes [Renes and Boileau, 2009]. Combining the

inequalities (5.19) and (5.20), the lower bound of the key extraction rate is given

by

K ≥ log2

1

c
− S(R|B)− S(S|B). (5.21)

As the lower bound log2
1
c

+ S(A|B) (given by Eq.(5.4)) is not always reachable

in the experimental situation, hence, using inequalities (5.3) and (5.9) we have

given the optimal lower bound of key extraction rate [Pramanik, Chowdhury, and

Majumdar, 2013] given by

KOptimal ≥ log2

1

c
−H(pσzd )−H(pSinf), (5.22)

where KOptimal ≤ K, i.e., the bound derived here is upper bounded by the result

of Berta et al. [Berta et al., 2010]. The implication is that the saturation of the

bound derived earlier [Berta et al., 2010] is not possible for all states, and the

bound derived here represents the optimal lower limit of key extraction valid for

any shared correlation, and for all measurement settings used by Alice and Bob.

5.5 Summary

In conclusion, the presence of entanglement of the observed system with the quan-

tum memory can help to reduce the uncertainty for the measurement of two non-

commuting observables. The lower bound of the uncertainty relation in the pres-

ence of quantum memory gives also the lower bound of the amount of secret

key extracted per state [Berta et al., 2010]. Two recent experiments (using pure

[Prevedel et al., 2011] and mixed [Li et al., 2011] entangled state) capture the

effectiveness of reducing the uncertainty in the presence of quantum memory. The

lower bound of the uncertainty relation given in [Berta et al., 2010; Li et al.,
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2011; Prevedel et al., 2011] is dependent on measurement settings. In [Pramanik,

Chowdhury, and Majumdar, 2013], we have given the optimal lower bound of the

uncertainty relation in the experimental situation [Li et al., 2011] with the help

of the fine-grained uncertainty relation [Oppenheim and Wehner, 2010]. The op-

timal lower bound is captured by the maximum winning probability (which gives

minimum uncertainty) obtained with the help of the fine-grained uncertainty rela-

tion [Oppenheim and Wehner, 2010]. Our bound is independent of measurement

settings. In various examples, e.g., pure entangle state, Werner state, mixed entan-

gled state with maximally mixed marginals, we have shown that the lower bound

given in [Berta et al., 2010; Li et al., 2011; Prevedel et al., 2011] is unreachable,

whereas the lower bound given in [Berta et al., 2010] for maximally entangled and

Bell diagonal state (used in the experiment [Li et al., 2011]) can be experimentally

realized [Pramanik, Chowdhury, and Majumdar, 2013]. The lower bound of the

secret key rate is modified by KOptimal given by Eq.(5.22).



Chapter 6

Improvement of teleportation

fidelity with the help of weak

measurement

In the earlier chapters, we have seen how an unknown qubit state is sent to a dis-

tant location with the help of inter-particle entanglement. i.e., the entanglement

between, say, spin degrees of freedom of two spatially separated particles (known

as teleportation), and with the help of intra-particle entanglement, i.e., the entan-

glement between, say, the path and spin degrees of freedom of a single spin-1/2

particle. In the above protocols, we did not consider mixed states (which occur

due to the decoherence, i.e., the interaction of the system with the environment)

. But, in any experiment, systems interact with the environment continuously.

Due to the presence of decoherence, the quantum correlation present in an entan-

gled state decays and in certain situation the entanglement vanishes completely,

which is known as entanglement sudden death [Almeida et al., 2007]. As a re-

sult, the teleportation fidelity decreases. It has been noted that under certain

specially chosen conditions, decoherence can have its reverse effect, i.e., entan-

glement between two systems could be created or increased by their collective

interactions with the common environment [Bose et al., 1999; Braun, 2002; Duan

and Kimble, 2003; Plenio and Huelga, 2002]. Several experimental proposals have

been suggested to capture such effects in entanglement generation using trapped

ions and cavity fields [Ghosh, Majumdar, and Nayak, 2006; Kim et al., 2002;

Kraus and Cirac, 2004]. However, for the specific case of teleportation it has been

70
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observed that the effect of amplitude damping on one of the qubits of a shared

bipartite state could lead to the enhancement of fidelity above the classical limit

for a class of states whose fidelity just below the quantum region [Badziag et al.,

2000]. Such an improvement is possible for low values of the damping parameter,

and occurs only for restricted class of states [Bandyopadhyay, 2002]. Recently,

it has been shown that quantum entanglement can be protected with the help of

weak measurement and its reversal, when the system interacts with environment

via amplitude damping channel [Kim et al., 2009, 2012; Koashi and Ueda, 1999;

Korotkov and Jordan, 2006; Lee et al., 2011; Man, Xia, and An, 2012].

6.1 Enhancement of teleportation fidelity with

the help of environmental interaction

For the purpose of teleportation, Alice prepares two qubits labeled by ‘1’ and ‘2’

in one of the four maximally entangled states, given by

|ψ〉M± =
|00〉12 ± |11〉12√

2
(6.1)

|φ〉M± =
|01〉12 ± |10〉12√

2
(6.2)

and then she sends the 2nd qubit labeled by ‘2’ to Bob over the noisy channel,

where the 1st qubit labeled by ‘1’ is kept with herself. At the time of transit over

the environmental, the 2nd qubit interacts with the environment, and as an effect,

the entanglement between the qubits decreases, and the maximally entangled state

becomes a mixed state σ12. The success of teleportation using the state σ12 is

quantified by the fidelity (defined in the Eq.(3.11)). The teleportation fidelity

F (σ12) of the state σ12 is given by [Horodecki et al., 1999]

F (σ12) =
2f(σ12) + 1

3
, (6.3)

where the fully entangled fraction (FEF), f(σ12) is defined by

f(σ12) = max
|φ〉
〈φ|σ12|φ〉, (6.4)

where maximizing is taken over all two qubit maximally entangled states |φ〉. For

the shared maximally entangled state σM12 , f(σM12 ) = 1 and F (σM12 ) = 1. In the
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absence of entanglement, i.e., by using shared randomness, one can achieve the

average teleportation fidelity of 2/3 [Massar and Popescu, 1995]. Hence, if the

FEF f(σ12) ≤ 1/2, the state σ12 is useless for teleportation, as the corresponding

teleportation fidelity F (σ12) lies in the classical region (i.e., F (σ12) ≤ 2/3.

In the Ref. [Badziag et al., 2000], the authors investigated the possibility of getting

quantum advantage, i.e., the fidelity to lie between 2/3 and 1 from the shared

entangled state σ12 with f(σ12) ≤ 1
2

with the help of LOCC (local operations

and classical communications). They proved that any bistochastic map (Λ) which

preserves both the trace and identity (I), i.e., (Λ(I) = I) fails to improve the FEF

from classical region (0 ≤ f ≤ 1/2) to quantum region (f > 1/2) and they also

showed that for a class of states ρ12 given by [Badziag et al., 2000]

ρ12 =


λ11 0 0 λ14

0 λ22 −γ23 0

0 −γ23 λ33 0

λ14 0 0 λ44

 , (6.5)

where γ23 ≥ 0 and λ14 are real; and λ22 + λ33 ≥ 1
2
, γ23 ≥ (1 − λ22 − λ33)/2, the

fidelity (F (ρ12) = (1 + λ22 + λ33 + 2γ23)/3 ≥ 2/3) can be enhanced by applying a

non-bistochastic map Λ (which preserves the trace but not the identity). For the

choice of parameters λ11 = λ14 = 0, λ22 = 3 − 2
√

2, λ33 = 1, λ44 = 2
√

2 − 2 and

γ23 =
√

2−1, the fidelity of the above state which initially belongs to the classical

region (i.e., F (ρ12) = 2/3) can be enhanced upto 2.06
3

(which lies in the quantum

region) by applying Λα on any qubits (say, α-th qubit, where α ∈ {1, 2}) [Badziag

et al., 2000]. The map Λα which is responsible for the enhancement of fidelity in

the above example, represents the dissipative interaction of any one qubit with

the environment via amplitude damping channel (ADC). The map Λα is given by

Λα(ρα) = Wα,0ραW
†
α,0 +Wα,1ραW

†
α,1, (6.6)

where α ∈ {1, 2}, ρ1(2) = Tr2(1)[ρ12], and the operators Wα,i are given by

Wα,0 =

(
1 0

0
√
Dα

)
, Wα,1 =

(
0
√
Dα

0 0

)
, (6.7)

where Dα = 1 −Dα. Here D1 and D2 are the strength of interactions of the 1st

qubit (belonging to Alice) and 2nd qubit (belonging to Bob) with the environment,
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respectively, and
∑
i

W †
α,iWα,i = I. The above map describes the interaction of the

environment (which is initially in the state |0〉E) with the qubit by the following

transitions

|0〉i|0〉E −→ |0〉i|0〉E,

|1〉i|0〉E −→
√
Dα|1〉i|0〉E +

√
Dα|0〉i|1〉E (6.8)

where i ∈ {1, 2} and α = 1(2) for i = 1(2).

Later, in the Ref. [Bandyopadhyay, 2002] the author showed that the above inter-

esting class of states ρAB, used in the Ref. [Badziag et al., 2000] are obtained when

Alice prepares the two qubit maximally entangled state only in the class given by

Eq.(6.1) and sends one qubit (say, second qubit labeled by ‘2’) to Bob over ADC.

Now, for the purpose of enhancing the fidelity, Alice allows her qubit (i.e., the 1st

qubit labeled by ‘1’) also to interact with the environment via ADC. Here, two

possible cases are considered. In the Case-I, the environmental interaction with

single qubit is considered and in the Case-II, the environmental interaction with

both qubits is considered.

Case I : According to the protocol demonstrated in the Ref. [Bandyopadhyay,

2002], after preparing qubit ‘1’ and ‘2’either in the state given by Eq.(6.1) or in

the state given by Eq.(6.2), when Alice sends the 2nd qubit to Bob over a noisy

channel, the shared state after environmental interaction is given by

ρ′|ψ〉M± (|φ〉M± ) = (I ⊗W2,0)ρ|ψ〉M± (|φ〉M± )(I ⊗W
†
2,0)

+(I ⊗W2,1)ρ|ψ〉M± (|φ〉M± )(I ⊗W
†
2,1), (6.9)

where ρ|ψ〉M± (|φ〉M± ) is the density state of |ψ〉M± (|φ〉M± ). The FEF of the state

ρ′|ψ〉M± (|φ〉M± )
is same and is given by [Bandyopadhyay, 2002]

f 1(ρ′) =
1

4
+

1

2

√
1−D2 +

1

4
(1−D2). (6.10)

and the corresponding fidelity turns out to be F 1(ρ′) = 4+2
√

1−D2−D2

6
, obtained with

the help of Eq.(6.3). In the range (2
√

2 − 2) ≤ D2 ≤ 1, the teleportation fidelity

F 1(ρ′) lies in the classical region, and for others values, i.e., 0 ≤ D2 < 2
√

2 − 2,

F 1(ρ′) lies in the quantum region.
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Case II : Here, environment affects both the qubits. After environmental inter-

action, the two qubit state |ψ〉M± (|φ〉M± ) becomes

ρ′′|ψ〉M± (|φ〉M± ) = (W1,0 ⊗ I)ρ′|ψ〉M± (|φ〉M± )(W
†
1,0 ⊗ I)

+(W1,1 ⊗ I)ρ′|ψ〉M± (|φ〉M± )(W
†
1,1 ⊗ I), (6.11)

where ρ′|ψ〉M± (|φ〉M± )
is given by Eq.(6.9). The FEF of the state, ρ′′|φ〉M±

is given by

[Bandyopadhyay, 2002]

f 21(ρ′′|φ〉M±
) = 1−D ∀D ≤ 2

3

=
D

2
∀D ≥ 2

3
, (6.12)

where D1 = D2 = D, i.e., both qubits interact with the same environment. It

is easily seen from the Eq.(6.12) that the FEF, f 21(ρ′′|φ〉M±
) (and hence the corre-

sponding teleportation fidelity F 21(ρ′′|φ〉M±
)) always belongs to classical region for

all values of D chosen from the region 0 ≤ D ≤ 1.

For the other state, ρ′′|ψ〉M±
, the FEF is given by [Bandyopadhyay, 2002]

f 22(ρ′′|ψ〉M±
) = 1−D +

1

2
D2. (6.13)

The fidelity F 22(ρ′′|ψ〉M±
) corresponding to the FEF f 22(ρ′′|ψ〉M±

) lies in the quantum

region, i.e., F 22(ρ′′|ψ〉M±
) > 2

3
for 0 ≤ D < 1.

Now, we compare the teleportation fidelity achieved in the Case-I with the Case-II.

For the prepared state |ψ〉M± , the teleportation fidelity F 1(ρ′|ψ〉M±
) (for the case where

decoherence affects a single qubit) lies in the classical region (i.e., F 1(ρ′|ψ〉M±
) ≤ 2

3
)

for (2
√

2 − 2) ≤ D2 = D ≤ 1, and in the quantum region for 0 ≤ D2 = D <

(2
√

2−2), whereas, F 22(ρ′′|ψ〉M±
) lies in the quantum region (i.e.,F 22(ρ′′|ψ〉M±

) > 2
3

) for

0 ≤ D < 1. Hence, due to the effect of decoherence on the 1st qubit, those states

ρ′|ψ〉M±
which were unable to gives non-classical teleportation fidelity now show

non-classical fidelity, except for the state ρ′|ψ〉M±
with D = 1. For the other class of

prepared state, |φ〉M± , there is no such improvement. According to Bandyopadhyay

[Bandyopadhyay, 2002], the improvement of fidelity from the classical region to

the quantum region is due to the enhancement of classical correlation by the

application of ADC on the 1st qubit, as LOCC by itself is unable to increase the

entanglement.
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6.2 Weak measurement

Projective measurement, associated with an observable, β (which represents a

Hermitian operator) is given by

β =
∑
b

βbPb, (6.14)

where Pb (= |b〉〈b|) is the projector on the eigenbasis |b〉 (i.e., PiPj = δij) of

the observable β, βb is the corresponding measurement outcome and
∑

i Pi = I.

Due to a projective measurement on an observed system which was initially in the

state ρ, it collapses to one of the eigenbasis {|b〉} of the observable with probability

Tr[Pb ρ]. Projective measurement is irreversible as it has no inverse. For example,

in the qubit system for the measurement of σz, the projectors are given by

P0 = |0〉〈0| =

(
1 0

0 0

)
, P1 = |1〉〈1| =

(
0 0

0 1

)
, (6.15)

where the projector P0 collapses the state of the system to the spin up state

(|0〉, with the corresponding measurement outcome β0 = +1) and the projector P1

collapses the state of the system to the spin down state (|1〉, with the corresponding

measurement outcome β1 = −1), along the z-direction. Here, P0 and P1 are

singular matrices, and hence, they have no inverse. However, the most general

measurement is positive operator valued measurement (POVM). In the case of

POVM, the restriction of forming basis for Pa, i.e., PiPj = δij is withdrawn.

But, the POVM is achieved as projective measurement in higher dimension, i.e.,

by performing the joint measurement on the combined observed and auxiliary

system.

Weak measurement is achieved by reducing the sensitivity of the detector, i.e.,

the detector clicks with probability pk if the input qubit (labeled by k) is in the

state |1〉k and never clicks if the input state is in the state |0〉k [Kim et al., 2009;

Lee et al., 2011]. In the technique of weak measurement we use post-selected

states (corresponding to the non-clicking of the detector) for further tasks. The

measurement corresponding to the detection of the particle is given by

Mk,1 =

(
0 0

0
√
pk

)
, (6.16)
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which does not have any inverse, and hence, Mk,1 is irreversible, i.e, when the

detector clicks, it is unable to get back to the input state in a reversible way. The

measurement operator when the detector does not click is given by

Mk,0 =

(
1 0

0
√
pk

)
, (6.17)

where p = 1− p and M †
k,0Mk,0 +M †

k,1Mk,1 = 1. When the detector does not click,

the input state |1〉k partially collapses towards |0〉k and the input state |0〉k is

unaffected. From Eq.(6.17), it is clear that Mk,0 is reversible having mathematical

inverse, i.e.,

M−1
k,0 =

(
1 0

0 qk,

)
(6.18)

where qk = 1√
pk

.

6.3 Applications of Weak measurement

Weak measurement plays an important role to protect the quantum coherence of a

single qubit against the interaction with the environment via amplitude damping

decoherence [Korotkov and Keane, 2010; Lee et al., 2011]. The amplitude damping

decoherence (given by Eq.(1.45)) leaves the system unchanged when the system is

in the ground state (|0〉). However, when the system is in the exited state (|1〉), it

jumps to ground state by emitting one photon to the environment with probability

D. The weak measurement Mk,0 (given by Eq.(6.17)) can be reversed when the

system is in the exited state, since its inverse exists. Hence, weak measurement

can protect the quantum coherence against the amplitude damping decoherence.

Extending this for two qubits, Kim et al. [Kim et al., 2012] have shown experimen-

tally that the entanglement can be protected with the help of weak measurement

in the presence of amplitude damping decoherence. In [Pramanik and Majumdar,

2013], we have optimally protected the teleportation fidelity with the help of the

technique of weak measurement and its reversal when the systems interacts with

the environment via amplitude damping channel. Here, we have also shown that

the protection of entanglement is not equivalent with the protection of teleportion

fidelity.
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6.3.1 Entanglement protection with the help of weak mea-

surement

The procedure begins by preparing maximally entangled state either in the class

given by Eq.(6.1) or in the class given by Eq.(6.2), and then uses the technique

of weak measurement and reverse weak measurement to protect the entangle-

ment when one or both qubits are affected by environment modeled by amplitude

damping channel. Here, we study entanglement protection when either one qubit

is affected by the environment, or both qubits are affected by the environment.

Alice prepares two qubits either in the class given by Eq.(6.1) or in the class given

Eq.(6.2) and sends the 2nd qubit to Bob over the environment. Due to the inter-

action of the 2nd qubit with the environment, the shared state becomes ρ′|ψ〉M± (|φ〉M± )

given by Eq.(6.9). The entanglement (measured by concurrence [Wootters, 1998])

of the above state is given by

C1D = C(ρ′|ψ〉M± (|φ〉M± )) =
√

1−D, (6.19)

where D2 = D.

Now, to protect the entanglement from the environmental interaction, Alice makes

a weak measurement with strength p2 = p on the 2nd qubit. Due to the weak

measurement the shared state ρ|ψ〉M± (|φ〉M± ) becomes

ρW|ψ〉M± (|φ〉M± ) = (I ⊗M1,0)ρ|ψ〉M± (|φ〉M± )(I ⊗M1,0)†. (6.20)

Note that, here Alice uses the post-selected state, i.e., when detector clicks she

discards the prepared state, and when detector does not click, she keeps the two

qubits state for further processing.

Next, Alice sends the 2nd qubit over the environment. Due to the interaction with

the environment, the shared state becomes ρD|ψ〉M± (|φ〉M± )
= I⊗Λ2(ρW|ψ〉M± (|φ〉M± )

), where

the action of Λ2 on the second qubit is defined in the Eq.(6.6). After getting the

2nd particle, Bob makes a reverse weak measurement given by [Kim et al., 2012]

N2 =

(√
q2 0

0 1

)
, (6.21)
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where q2 = 1 − q2 and q2 is the strength of measurement by Bob. After weak

measurement, the shared state becomes

ρR|ψ〉M± (|φ〉M± ) = (I ⊗N2)ρD|ψ〉M± (|φ〉M± )(I ⊗N2)†. (6.22)

The concurrence of the state ρR|ψ〉M± (|φ〉M± )
is given by

C(ρR|ψ〉M± (|φ〉M± )) =
4(1−D)(1− p)(1− q)

(p(Dp− 1)− (D + 1)q + 2)2
, (6.23)

where q = q2. To protect the entanglement maximally, we maximize C(ρR|ψ〉M± (|φ〉M± )
)

with respect to the strength of the weak measurement q, and the maximum con-

currence is given by

C1W = C(ρR|ψ〉M± (|φ〉M± )) =
1√

1 +D(1− p)
, (6.24)

which is obtained for the choice of optimal strength of reverse weak measurement

qO = −2Dp+2D+p
−Dp+D+1

. Due to post-selection at the stage of each weak measurement,

the success probability of obtaining the above concurrence is given by [Man, Xia,

and An, 2012]

P1CSucc = Tr[ρR|ψ〉M± (|φ〉M± )] = (1−D)(1− p). (6.25)

When the protocol fails, i.e., the detector used in weak measurement clicks, the

entanglement vanishes (i.e., C = 0) which occurs with the probability (1−P1CSucc).

Hence, the average entanglement (where average is taken over the success proba-

bility of applying weak measurement and its reversal) is

C1Av = P1CSuccC1W . (6.26)

It is easily seen that C1W ≥ C1D ≥ C1Av. As the average concurrence C1Av

lies below the one obtained through the amplitude damping channel without weak

measurement, the entanglement protection protocol fails without post-selection.

Similar results hold true if both the particles are subjected to decoherence.
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6.3.2 Teleportation fidelity preservation with the help of

weak measurement

In [Pramanik and Majumdar, 2013], we have studied the preservation of telepor-

tation fidelity when the entangled system is open to amplitude damping envi-

ronments, with the help of weak measurement and its reversal. Similar to Ref.

[Bandyopadhyay, 2002], here we consider that Alice prepares two qubits in one of

the four maximally entangled states given by Eqs.(6.1) and (6.2), and sends the

2nd qubit to Bob, where the 1st qubit is kept with her. Here, we consider two

different cases. In the 1st case, the 2nd qubit is affected by amplitude damping

environment at transit time and the 1st qubit is unaffected. To protect the tel-

portation fidelity of the prepared state, they use the weak measurement technique

[Kim et al., 2012], i.e., Alice makes a weak measurement on the 2nd qubit before

sending it, and after getting the 2nd qubit, Bob makes a reverse weak measurement

on it. In the 2nd case, both qubits are affected by amplitude damping environment

and they use the technique of weak measurement and its reverse measurement to

protect the teleportation fidelity of the prepared state.

Case I : Here, after preparing the two qubit state in one of the four maximally

entangled states given by Eqs.(6.1) and (6.2), Alice makes a weak measurement on

the 2nd qubit to reduce the effect of amplitude damping environment. After mak-

ing the weak measurement on the 2nd qubit, the two qubit state (unnormalized)

becomes either

ρW± = (I ⊗M2,0)|ψ〉M± 〈ψ|(I ⊗M
†
2,0)

=
1

2


1 0 0 ±

√
p2

0 0 0 0

0 0 0 0

±
√
p2 0 0 p2

 (6.27)

or

σW± = (I ⊗M2,0)|φ〉M± 〈φ|(I ⊗M
†
2,0)

=
1

2


0 0 0 0

0 p2 ±
√
p2 0

0 ±
√
p2 1 0

0 0 0 0

 , (6.28)
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depending upon the initially prepared state. The success probability, i.e., the

detector’s inefficiency is given by

PD
2 = Tr[ρW± ] = Tr[σW± ] = (1− p2

2
). (6.29)

Next, Alice sends the second qubit to Bob over ADC. Due to interaction of the

2nd qubit with the environment, the shared state ρW± becomes

ρD± = (I ⊗W2,0)ρW± (I ⊗W †
2,0) + (I ⊗W2,1)ρW± (I ⊗W †

2,1)

=
1

2


1 0 0 k1

0 0 0 0

0 0 D2p2 0

k1 0 0 k2
1

 (6.30)

where k1 = ±
√
D2p2, Similarly, σW± becomes

ρD± = (I ⊗W2,0)σW± (I ⊗W †
2,0) + (I ⊗W2,1)σW± (I ⊗W †

2,1)

=
1

2


D2p2 0 0 0

0 k2
1 k1 0

0 k1 1 0

0 0 0 0

 (6.31)

After receiving the particle, Bob applies the reverse quantum measurement [Kim

et al., 2009] N2 (given by Eq.(6.21)). At the end, Alice and Bob actually share

the state given by

ρR± = (I ⊗N2)ρD±(I ⊗N †2)

=
1

2


q2 0 0 ±

√
D2p2q2

0 0 0 0

0 0 D2p2q2 0

±
√
D2p2q2 0 0 D2p2

 , (6.32)
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σR± = (I ⊗N2)σD± (I ⊗N †2)

=
1

2


D2p2q2 0 0 0

0 D2p2 ±
√
D2p2q2 0

0 ±
√
D2p2q2 q2 0

0 0 0 0

 . (6.33)

The states ρR± and σR± have the same FEF, i.e., the FEF is same whether Alice

prepares the initial two qubit state in the class given by Eq.(6.1) or (6.2), and it

is given by

f1 =
p2 + q2 + 2

√
D2p2q2 −D2p2

2(p2 + q2)− 2D2p2q2

(6.34)

For the purpose of the experiment, the strength of reverse weak measurement has

to be chosen suitably. In the Ref. [Man, Xia, and An, 2012], for the purpose of

maximally protecting the entanglement from the interaction of qubits with the

environment via ADC, the authors calculate the optimal strength of reverse weak

measurement that maximizes the concurrence of the non-maximally entangled

state used by them. In the Ref. [Pramanik and Majumdar, 2013], we maximize

the teleportation fidelity f1 (given by Eq.(6.34)) with respect to q2 to obtain qO2 ,

the optimal reverse weak measurement strength which maximally protects the

fidelity of the unknown teleportated state undergoing amplitude damping. The

value of qO2 which is same for both class of prepared states given by Eqs. (6.1) and

(6.2), is given by

qO2 =
3D2p2 +D2

2p
2
2 + p2

(1 +D2p2)2
. (6.35)

Note that, the choice q2 = p2 +D2p2 optimally preserves the entanglement of the

maximally entangled state [Kim et al., 2012; Man, Xia, and An, 2012], but, it is

unable to maximize the fidelity of the state passing through the noisy channel.

For the choice of initial state chosen from the class given by Eqs.(6.1) and (6.2),

using Eqs.(6.34) and (6.35) one can calculate the optimal FEF which is given by

fO1 =
2 +D2p2

2 + 2D2p2

, (6.36)
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where fO1 is bounded by 0.75 (occurs for the choice D2 = 1 and p2 = 0) and 1

(occurs for either p2 = 1 or D2 = 0). Here one may note that the optimal tele-

portation fidelity FO
1 (=

2fO1 +1

3
) always belongs to the quantum region irrespective

of the strength of decoherence. Due to the weak measurement and the reverse

weak measurement, the overall success probability, i.e., the probability of obtain-

ing the state ρR± (σR±) when Alice prepares the two qubits state in the class given

by Eq.(6.1) (Eq.(6.2)) is given by [Lee et al., 2011]

P 1
Succ = Tr[ρR±] = Tr[σR±] =

1

2
(p2 + qO2 −D2p2)

=
D2p2(2 +D2p2)

2 + 2D2p2

, (6.37)

where the success probability lies between 0 (which occurs for either D2 = 1,

or p2 = 1, or both) and 1 (which occurs when both D2 = 0 and p2 = 0 hold

simultaneously).

Figure-6.1 shows the comparison between the optimal fidelity FO
1 (corresponding

to the FEF fO1 given by Eq.(6.36)) with the fidelity F 1 (corresponding to the FEF

f 1 given by Eq.(6.10)) which corresponds to the teleportation fidelity when weak

measurement technique (to suppress the amplitude damping decoherence) is not

used. From the above figure, it is clear that FO
1 is always larger than F 1 (except

D2 = 0 and p2 = 0) and always lies in the above the classical region for all values

of D2 and p2, whereas in the range (2
√

2 − 1) ≤ D2 ≤ 1, F 1 lies in the classical

region.

In the protocol of protecting the teleportation fidelity, the role of the reverse weak

measurement performed by Bob is more important than the weak measurement

made by Alice before sending the particle to Bob over ADC. For the justification

of above point, in [Pramanik and Majumdar, 2013] we have considered that Alice

sends the 2nd particle to Bob without making any weak measurement on it, i.e.,

p2 = 0, over the environment. After receiving the 2nd particle, Bob makes an

optimal weak measurement with strength q2 = qO2 given by Eq.(6.35). The optimal

FEF in this case is given by

fO12 =
2 +D2

2 + 2D2

, (6.38)
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Figure 6.1: The flat plane represents the average classical fidelity 2
3 . The surface

intersecting it represents the fidelity F 1 corresponding to the FEF f1 = 1
4 + 1

2

√
1−D2+

1
4 (1−D2). The uppermost surface represents the fidelity FO1 corresponding to the FEF

fO1 = 2+D2p2
2+2D2p2

.

which is obtained from Eq.(6.36) by putting p2 = 1. The corresponding success

probability is
2−D2−D2

2

2(1+D2)
. Here, the teleportation fidelity FO

12 corresponding to the

FEF fO12 is not only greater than F 1, but, also FO
12 lies in quantum region, i.e.

5/6 ≥ FO
12 ≥ 1 for all values of decoherence parameter D2 chosen from the region

1 ≤ D2 ≤ 0.

Case II : In this case, we have considered environment effects on both the qubits

via amplitude damping decoherence. To prevent the loss of information about un-

known state in the teleportation protocol, Alice makes weak measurements (given

by Eq.(6.17)), separately on each qubit. After performing weak measurement by

Alice, the two qubits state belonging to the class given by Eq.(6.1) becomes

ρWW
± = (M1,0 ⊗M2,0)|ψ〉M± 〈ψ|(M1,0 ⊗M †

2,0)

=


1
2

0 0 ±
√
p1p2
2

0 0 0 0

0 0 0 0

±
√
p1p2
2

0 0 p1p2
2

 , (6.39)
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and the state belonging to the class given by Eq.(6.2) becomes

σWW
± =


0 0 0 0

0 p2
2

±
√
p1p2
2

0

0 ±
√
p1p2
2

p1
2

0

0 0 0 0

 . (6.40)

The success probabilities associated with the above weak measurement are respec-

tively given by

PD
12(ρWW

± ) = Tr[ρWW
± ] =

1

2
(1 + p1p2) (6.41)

and

PD
12(σWW

± ) = Tr[σWW
± ] =

1

2
(p1 + p2). (6.42)

After weak measurement, Alice sends the 2nd qubit through the ADC and si-

multaneously, she allows her qubit (1st qubit) to interact with the environment.

Hence, both qubits are affected by the environment. Due to the effect caused by

environmental interaction, the noisy shared state takes one of the following forms

(depending upon the initial state)

ρDD± =


1+D1D2k4

2

2 0 0 ±k5k42

0 D1D2k4
2

2 0 0

0 0 D1D2k4
2

2 0

±k5k42 0 0 k52k42

2

 (6.43)

σDD± =


D1p1

2 + D2p2
2 0 0 0

0 D2p2
2 ±k4k52 0

0 ±k4k52
D1p1

2 0

0 0 0 0

 , (6.44)

where k4 =
√
p1p2, k5 =

√
D1D2 and k6 = 1/(p1 + p2).

Next, both Alice and Bob apply reverse weak measurements with the strengths q1

and q2 on their respective particles. For the prepared state chosen from the class

given by Eq(6.1), the shared state becomes

ρRR± = (N1 ⊗N2)ρDD± (N1 ⊗N †2) (6.45)
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where N2 is given by Eq.(6.21) and N1 is given by

N1 =

(√
q1 0

0 1

)
, (6.46)

where q1 = 1− q1, and q1 is the strength of reverse weak measurement on the 1st

qubit.

Before maximizing the fidelity f(ρRR± ) in this case, for simplicity, let us make the

following assumptions – i. both the qubits interact with similar environments, i.e.,

D1 = D2 = D; ii. the strength of weak measurements on both qubits are the

same, i.e., p1 = p2 = p and q1 = q2 = q, as well. Similar to ‘Case-I’, we maximally

enhance the teleportation fidelity (i.e., the FEF f(ρRR± )) by maximizing f(ρRR± )

with respect to the reverse weak measurement strength q. The optimal FEF is

given by

fO2 = f(ρRR± ) =
1 +

√
1 +D2p2 +D2p2

2(1 +Dp
√

1 +D2p2 +D2p2)
, (6.47)

which occurs for the choice

qO =
1 +D2p2 −

√
D

2
p2(1 +D2p2)

1 +D2p2 . (6.48)

From the above expression it follows that fO2 always lies in the quantum region,

i.e., between 0.5 (corresponding to D = 1 and p2 = 0) and 1.0 (corresponding to

D = 0 and p2 = 0). The success probability decreases according to the relation

P 2
Succ = Tr[ρRR± ]

=
D

2
p2(1 +Dp

√
1 +D2p2 +D2p2)

1 +D2p2 , (6.49)

where we use q = qO. The success probability P 2
Succ varies from 0 to 1.

Here again, in the Figure-6.2, we compare the above situation with the case when

decoherence acts without introducing weak measurement and reversal. In the

region, 0 ≤ D ≤ 1 and 0 < p2 ≤ 1, FO
2 lies in the quantum region, whereas F 22

(which corresponds to the FEF f 22 given by Eq.(6.13)) lies in the non-classical

region for 0 ≤ D < 1. FO
2 is always greater than F 22 for any values of D and p

chosen from the region 0 < D ≤ 1 and 0 < p2 ≤ 1, respectively. Note that, under
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the above assumption, i.e., D1 = D2, p1 = p2 and q1 = q2, the state in the class

given by Eq.(6.2) remains unaffected. Hence, the weak measurement technique is

not useful for increasing the fidelity beyond the classical region for the state in the

class given by Eq.(6.2).

Figure 6.2: The flat plane represents the average classical fidelity 2
3 . The lower

surface represents the fidelity F 2 corresponding to the FEF f2 = 1 − D + D2

2 .
The upper surface represents the fidelity FO2 corresponding to the FEF fO2 =

1+
√

1+D2(1−p)2+D2(1−p)2

2(1+D(1−p)
√

1+D2(1−p)2+D2(1−p)2)
. Here we consider D1 = D2 = D and p1 = p2 = p.

Next, we compare the success probabilities for both the cases studied, which are

given by Eqs.(6.37) and (6.49), respectively. In Figure-6.3, we plot the success

probabilities P 1
Succ with P 2

Succ , as functions of the decoherence parameter and the

strength of weak measurement. Note that in both the cases the corresponding

success probabilities fall with the increase of these parameter values. However,

P 1
Succ always lies above P 2

Succ, since in the latter case both qubits undergo damping,

and two weak measurements are required.

6.4 Application of weak measurement without

post-selection

In the previous section, we have discussed about the protection of entanglement

and teleportation fidelity when the system interacts with environment, using the

technique of weak measurement and it’s reversal. For this purpose, we used post-

selection after performing weak measurement, i.e., we discarded those cases when
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Figure 6.3: The upper surface represents the success probability P 1
Suss =

D2p2(2+D2p2)
2+2D2p2

of Case I. The lower surface represents the success probability P 2
Succ =

D
2
p2(1+Dp

√
1+D2p2+D2p2)

1+D2p2
of Case II where we consider D1 = D2 = D and p1 = p2 = p.

the detector clicks making the initial state collapse to |1〉. Here, we look at the

whole ensemble of states, i.e., we also consider those states when the detector does

not click along with the states when detector clicks. In this scenario let us first we

discuss about entanglement protection using the formalism [Kim et al., 2012] and

then the protection of teleportation fidelity [Pramanik and Majumdar, 2013].

6.4.1 Entanglement protection

In the case of entanglement protection [Kim et al., 2012], when decoherence acts

on single particle and the technique of weak measurement and its reversal is not

used, the concurrence of the shared state is C1D =
√

1−D (given by 6.19), where

Alice initially prepared two qubits either in the class given by Eq.(6.1) or in the

class (6.2). By applying the technique of weak measurement and reverse weak

measurement, the above concurrence is improved to an amount C1W = 1√
1+D(1−p)

given by Eq.(6.24) with success probability P1CSucc = (1 − D)(1 − p) given by

Eq.(6.25). Now, when the detector used in weak measurement clicks, the protocol

fails and correspondingly the entanglement of two qubit vanishes (i.e., C = 0)

which occurs with probability (1 − P1CSucc). By considering the successful events

with failure events, the average entanglement becomes

C1Av = P1CSuccC1W . (6.50)
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The comparison among C1D, C1W and C1Av clearly shows that C1W ≥ C1D ≥
C1Av. The above comparison shows that without post-section the entanglement

protocol [Kim et al., 2012] fails. Similar results hold true if both qubit are sub-

jected to decoherence.

6.4.2 Protection of teleportation fidelity

For the Case I of protecting teleportation fidelity using the technique of weak

measurement and it’s reversal, the optimal fidelity FO
1 (corresponding to the op-

timal FEF fO1 given by Eq.(6.36)) is achieved with success probability P 1
Succ given

by Eq.(6.37). When the detector clicks, the protocol fails and such unsuccess-

ful events occur with probability (1− P 1
Succ). When the protocol fails, the shared

state among Alice and Bob is a separable state and the teleportation fidelity of the

shared state is less than or equal to 2/3. Hence, they use classical resource (i.e.,

shared randomness) to achieve maximum teleportation fidelity, and it is given

by 2/3 [Massar and Popescu, 1995]. Therefore, the average fidelity is given by

[Pramanik and Majumdar, 2013]

FAv
1 = FO

1 P
1
Suss +

2

3
(1− P 1

Suss) (6.51)

=
3D2 (1− p)2 +D (p2 − 8p+ 7)− 2p+ 6

6(D (1− p) + 1)2
,

where D2 = D and p2 = p. It can be seen that FAv
1 lies in the quantum region

(i.e., 2
3
< FAv

1 ≤ 1) for 0 ≤ D2 < 1 and 0 ≤ p2 ≤ 1.

The average fidelity FAv
1 and the fidelity F 1 (corresponding to the FEF f 1 given

by Eq.(6.10)) is compared in the Fig. 6.4. From the above figure, it clear that

for sufficiently strong environmental interaction, the fidelity F 1 when the tech-

nique of weak measurement and its reversal are not applied could fall below the

quantum region, i.e., for D2 = D > 0.82843, F 1 < 2
3
. However, by applying

weak measurement even without post-selection we have found that the average

fidelity FAv
1 is not only larger than the fidelity F 1 in the region 0.76299 < D < 1

and p <
D3−2

√
1−DD2−

q
(1−D)(D2−2

√
1−DD−D+1)−2

√
1−DD+1

D3−2
√

1−DD2−D2+D
, but, also belongs to the

quantum region [Pramanik and Majumdar, 2013]. This result holds true for

the state chosen from any class given by Eq.(6.1) or by Eq.(6.2). Our result

of FAv
1 > F 1 in the above range of decoherence is remarkable in the sense that

it has no analogue in the protocol for protecting entanglement [Kim et al., 2012].
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However, such a result is not obtained when both the qubits are made to interact

with the environment.

Figure 6.4: The upper surface represents the fidelity F 1 corresponding to FEF f1

given by Eq.(6.10). The middle surface represents the success probability FAv
1 given

by Eq.(6.52)of Case I. The lower surface represents the classical fidelity 2/3.

6.5 Summary

In [Pramanik and Majumdar, 2013], we have proposed a method to protect telepor-

tation fidelity through a noisy channel using the technique of weak measurement.

Here, we have reduced the loss of information about the unknown state due to the

interaction of the system with the environment via amplitude damping channel

with the help of weak measurement and reverse weak measurement. We have ob-

tained the optimal strength of reverse weak measurement that maximally protects

the unknown information over the environment. When one qubit is affected by

the environment, using the technique of weak measurement and it’s reversal, the

teleportation fidelity always belongs to the quantum region (i.e., fidelity greater

than 2/3) for both the classes given by Eqs.(6.1) and (6.2), whereas the teleporta-

tion fidelity falls below the classical region when the weak measurement technique

is not applied. Furthermore, in the above case, by enhancing the strength of the

weak measurement, one can achieve the fidelity arbitrary close to 1 with nonvan-

ishing success probability. Next, when dechoherence affects both the particles, the

weak measurement technique is able to protect the information for the prepared

state given by Eq.(6.1), but fails to do so for the state given by Eq.(6.2).
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We also show that by increasing the strength of weak measurement, the success

probability (which occurs due to post-selection at the stage of weak measurement)

decreases. The success probability when one qubit is affected by decoherence is

greater than the success probability when two qubits are affected by decoherence.

Finally, when we consider the whole ensemble of states (without post-selection),

for the Case I when the single qubit is affected by decoherence, the average fidelity

may be improved for a certain range of the decoherence parameter. The last result

makes our teleportation protocol [Pramanik and Majumdar, 2013] qualitatively

different from the protocol for preservation of entanglement [Kim et al., 2012].



Chapter 7

Conclusions and future directions

The presence of entanglement (i.e., quantum correlation) as a resource in nature

[Aspect, Dalibard, and Roger, 1982; Aspect, Grangier, and Roger, 1981, 1982]

makes some information processing tasks (e.g., teleportation, cryptography, com-

putation, etc.) more efficient (i.e., the success probability of performing such tasks

are higher) over all possible classical strategies. In this thesis, the possibility of

achieving proposed non-classical tasks (which are unable to be accomplished with

unit success probability using classical strategies) are studied. In the following

paras, we briefly summarize the results obtained in this thesis :

It is well known that the violation of Bell’s inequality [Bell, 1964; Clauser et al.,

1969] or generalized Bell’s inequality [Collins et al., 2002; Mermin, 1990; Svetlichny,

1987] reflects the presence of non-local features in a quantum state of two or more

particles. But, there is no such inequality to test the existence of non-local features

at the single particle level. There are a few experimental proposals [Dunningham

and Vedral, 2007; Hardy, 1994; Tan, Walls, and Collett, 1991], and among them

some [Hardy, 1994; Tan, Walls, and Collett, 1991] have been criticized for various

reasons [Greenberger, Horne, and Zeilinger, 1995] and [Dunningham and Vedral,

2007], and are yet to be implemented experimentally. In the Ref. [Pramanik et

al., 2012], we have proposed an experiment by using the atom-cavity entangle-

ment that has already been practically operational for many years now [Raimond,

Brune, and Haroche, 2001] to show the presence of non-locality at single particle

level.

In the following the chapter, we show that the presence of non-locality at the single

particle level can enhance the efficiency of several information processing tasks over

91
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that obtained by using possible classical resources. In the Ref. [Pramanik et al.,

2010], we have proposed a protocol to transfer the unknown quantum state at a

distant location, which has similar motivation as teleportation. In this protocol,

we have used intra-particle entanglement between path and spin degrees of freedom

of a spin-1/2 particle, created with the help of a beam splitter and a spin flipper.

The main advantage of our protocol [Pramanik et al., 2010] is that to send an

information about an unknown quantum state at a distant location, initially shared

entanglement is not needed. Hence, one does not have to preserve entanglement

between two distant parties. As in our case the entanglement is created within a

single particle, our scheme should be less susceptible to decoherence effects, and

thus provides an advantage over the standard scheme using two entangled qubits.

In [Pramanik et al., 2010], we have use intra-particle entanglement as a resource to

transfer an unknown quantum state and this opens up the possibility of exploiting

path-spin intra-particle entanglement for performing further information theoretic

tasks such as quantum cryptography.

When the uncertainty is measured in the coarse grained way, i.e., the average un-

certainty where average is taken over all measurement outcomes (e.g., standard

deviation, entropy), the uncertainty relations (e.g., Heisenberg uncertainty rela-

tion [Heisenberg, 1927] and entropic uncertainty relation [Deutsch, 1983; Kraus,

1987; Maassen and Uffink, 1988]) are incapable of capturing the degree of non-

locality of a physical theory. But, if we measure the uncertainty in the fine-grained

way, i.e., the uncertainty of a particular measurement outcome or any combination

of outcomes, the uncertainty relation (known as fine-grained uncertainty relation

(FUR)) can discriminate different physical theories (i.e., classical physics, quantum

physics, and no-signaling theories with maximum non-locality or superquantum

correlations) for both bipartite and tripartite systems [Oppenheim and Wehner,

2010; Pramanik and Majumdar, 2012]. In the bipartite case, FUR discriminates

different physical theories with the help of the strength of non-locality as man-

ifested by the Bell-CHSH inequality [Bell, 1964; Clauser et al., 1969]. In the

tripartite case, FUR discriminates different physical theories with the help of the

strength of non-locality as manifested by the Svetlichny inequality [Svetlichny,

1987]. Further, the degree of non-locality for different physical theories can be

studied when the observables are chosen with bias.

Heisenberg uncertainty relation [Heisenberg, 1927] (entropic uncertaonty relation)

limits the product (sum) of uncertainties of the measurement outcomes for two
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non-commuting observables. Here, the correlation of the observed system with an-

other system called quantum memory [Berta et al., 2010] is not considered. But,

by considering the correlation with the quantum memory, the sum of uncertainties

(where uncertainty is measured in terms of entropy [Maassen and Uffink, 1988]) for

the measurement of two non-commuting observables can be decreased. When the

observed system is entangled with the quantum memory, the sum of uncertainties

reduces, and for the maximally entangled state, there is no uncertainty for the

measurement of two non-commuting observables [Berta et al., 2010]. Two recent

experiments [Li et al., 2011; Prevedel et al., 2011] show the effectiveness of reduc-

ing the sum of uncertainties using quantum memory. In [Pramanik, Chowdhury,

and Majumdar, 2013], we have shown that it is not always possible to reach the

lower bound of the sum of uncertainties given by Berta et al. [Berta et al., 2010; Li

et al., 2011; Prevedel et al., 2011] in actual practice. Using the fine-grained uncer-

tainty relation [Oppenheim and Wehner, 2010], we have found the optimal lower

bound for the sum of uncertainties [Pramanik, Chowdhury, and Majumdar, 2013]

which is achievable in experiments. Our lower bound is independent of measure-

ment settings. Hence, in quantum key generation the lower bound of the secret

key rate (which is associated with the the lower bound of uncertainty in presence

of quantum memory) is modified [Pramanik, Chowdhury, and Majumdar, 2013].

Our results show that the amount of entanglement between the observed system

and quantum memory is not responsible for optimally reducing the sum of uncer-

tainties for the measurement of two non-commuting observables. So, it would be

interesting to find out the physical resources which are responsible for reducing

the sum of uncertainties optimally.

Due to decoherence, the quantum correlation in an entangled state decays, in gen-

eral. Hence, it is obvious that the success probability of performing any task where

entanglement is necessary, will be decreased. The above result may fail to hold for

the case of teleportation when the system interacts with the environment via the

amplitude damping channel [Badziag et al., 2000; Bandyopadhyay, 2002]. When

the two qubits are prepared in the class given by Eq.(6.1), the teleportation fidelity

for the case where two qubits interact with the environment is not only larger than

the case where single qubit interacts with the environment [Badziag et al., 2000;

Bandyopadhyay, 2002], but, also belongs to the quantum region. In the Ref. [Kim

et al., 2012], the authors used the technique of weak measurement and reversing

weak measurement to protect the entanglement where the qubits interact with

the environment via the amplitude damping channel. In the Ref. [Pramanik and



Chapter 7. Conclusions and future directions 94

Majumdar, 2013], we have preserved the teleportation fidelity using the technique

of weak measurement and its reversal. Our analysis shows that the preservation

of entanglement is not equivalent with the preservation of teleportation fidelity.

When a single qubit is affected by the environment, the teleportation fidelity can

be enhanced arbitrarily close to unity for the prepared state chosen from the class

given by Eqs.(6.1) and (6.2). This protocol fails for the prepared state in the

class given by Eq.(6.2) when both qubits are affected by decoherence. As we use

post-selection, the probability of success decreases with increase of the strength

of weak measurement. The most remarkable result is that even when the whole

ensemble of states after performing the weak measurement are considered, for a

certain range of the decoherence parameter, the average teleportation fidelity is

larger than in the case when weak measurement and its reversal is not performed.

It will be interesting to study the effect of decoherence in various information pro-

cessing tasks using intra-particle entanglement and inter-particle entanglement, by

appling the technique of weak measurement.
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